Article
Keywords:
splines; biquadratic splines; mean value interpolation
Summary:
Continuity conditions for a biquadratic spline interpolating given mean values in terms of proper parameters are given. Boundary conditions determining such a spline and the algorithm for computing local parameters for the given data are studied. The notion of the natural spline and its extremal property is mentioned.
References:
[2] J. Kobza:
On algorithms for parabolic splines. Acta UPO, FRN, Math. XXIV 88 (1987), 169–185.
MR 1033338 |
Zbl 0693.65005
[3] J. Kobza:
Some properties of interpolating quadratic spline. Acta UPO, FRN, Math. XXIX 97 (1990), 45–63.
MR 1144830 |
Zbl 0748.41006
[4] J. Kobza:
Quadratic splines interpolating derivatives. Acta UPO, FRN, Math. XXX 100, 219–233.
MR 1166439 |
Zbl 0758.41005
[6] J. Kobza:
Quadratic splines smoothing the first derivatives. Appl. Math. 37(2) (1992), 149–156.
MR 1149164 |
Zbl 0757.65006
[7] J. Kobza, D. Zápalka:
Natural and smoothing quadratic spline. Appl. Math. 36(3) (1991), 187–204.
MR 1109124
[8] G. Maess: Smooth interpolation of curves and surfaces by quadratic splines with minimal curvature. Numerical methods and applications ’84, Sofia, 1985, pp. 75–81.
[9] J. S. Zavjalov, B. I. Kvasov, V. L. Mirosnicenko:
The methods of spline functions (in Russian). Nauka, Moscow, 1980.
MR 0614595