Previous |  Up |  Next

Article

Keywords:
splines; biquadratic splines; mean value interpolation
Summary:
Continuity conditions for a biquadratic spline interpolating given mean values in terms of proper parameters are given. Boundary conditions determining such a spline and the algorithm for computing local parameters for the given data are studied. The notion of the natural spline and its extremal property is mentioned.
References:
[1] C. de Boor: A practical guide to splines. Springer Verlag, New York, 1978. MR 0507062 | Zbl 0406.41003
[2] J. Kobza: On algorithms for parabolic splines. Acta UPO, FRN, Math. XXIV 88 (1987), 169–185. MR 1033338 | Zbl 0693.65005
[3] J. Kobza: Some properties of interpolating quadratic spline. Acta UPO, FRN, Math. XXIX 97 (1990), 45–63. MR 1144830 | Zbl 0748.41006
[4] J. Kobza: Quadratic splines interpolating derivatives. Acta UPO, FRN, Math. XXX 100, 219–233. MR 1166439 | Zbl 0758.41005
[5] J. Kobza: An algorithm for biparabolic spline. Appl. Math. 32(5) (1987), 401–413. MR 0909546 | Zbl 0635.65006
[6] J. Kobza: Quadratic splines smoothing the first derivatives. Appl. Math. 37(2) (1992), 149–156. MR 1149164 | Zbl 0757.65006
[7] J. Kobza, D. Zápalka: Natural and smoothing quadratic spline. Appl. Math. 36(3) (1991), 187–204. MR 1109124
[8] G. Maess: Smooth interpolation of curves and surfaces by quadratic splines with minimal curvature. Numerical methods and applications ’84, Sofia, 1985, pp. 75–81.
[9] J. S. Zavjalov, B. I. Kvasov, V. L. Mirosnicenko: The methods of spline functions (in Russian). Nauka, Moscow, 1980. MR 0614595
Partner of
EuDML logo