Article
Keywords:
one-step methods; two-point boundary value problems
Summary:
A general theory of one-step methods for two-point boundary value problems with parameters is developed. On nonuniform nets $h_n$, one-step schemes are considered. Sufficient conditions for convergence and error estimates are given. Linear or quadratic convergence is obtained by Theorem 1 or 2, respectively.
References:
[1] E.A. Coddington and N. Levinson:
Theory of ordinary differentical equations. McGraw-Hill, New York, 1955.
MR 0069338
[2] J.W. Daniel and R.E. Moore:
Computation and theory in ordinary differential equations. W.H. Freeman, San Francisco, 1970.
MR 0267765
[3] P. Henrici:
Discrete variable methods in ordinary differential equations. John Wiley, New York, 1962.
MR 0135729 |
Zbl 0112.34901
[5] T. Jankowski:
One-step methods for ordinary differential equations with parameters. Apl. Mat. 35 (1990), 67-83.
MR 1039412 |
Zbl 0701.65053
[6] T. Jankowski:
On the convergence of multistep methods for nonlinear two-point boundary value problems. APM (1991), 185–200.
MR 1109587 |
Zbl 0746.65060
[7] H.B. Keller:
Numerical methods for two point boundary value problems. Waltham, Blaisdell, 1968.
MR 0230476 |
Zbl 0172.19503
[8] H.B. Keller:
Numerical solution of two-point boundary value problems. Society for Industrial and Applied Mathematics, Philadelphia 24, 1976.
MR 0433897
[9] A. Pasquali:
Un procedimento di calcolo connesso ad un noto problema ai limiti per l’equazione $\dot{x}=f(t,x,\lambda )$. Mathematiche 23 (1968), 319-328.
MR 0267785
[11] Z.B. Seidov:
A multipoint boundary value problem with a parameter for systems of differential equations in Banach space. Sibirski Math. Z. 9 (1968), 223-228. (Russian)
MR 0281987
[12] J. Stoer and R. Bulirsch:
Introduction to numerical analysis. Springer-Verlag, New York, 1980.
MR 0557543