Previous |  Up |  Next

Article

Keywords:
Coupled differential system; boundary value problem; singularity of the first kind; Moore-Penrose pseudo-inverse
Summary:
In this paper we obtain existence conditions and an explicit closed form expression of the general solution of twopoint boundary value problems for coupled systems of second order differential equations with a singularity of the first kind. The approach is algebraic and is based on a matrix representation of the system as a second order Euler matrix differential equation that avoids the increase of the problem dimension derived from the standard reduction of the order method.
References:
[1] S. L. Campbell and C. D. Meyer, jr.: Generalized inverses of linear transformations. Pitman Pubs. Co., 1979.
[2] I. S. Gradshteyn and I. M. Ryzhik: Table of integrals, series and products. Academic Press, 1980. MR 1773820
[3] L. Jódar: Boundary value problems and Cauchy problems for the second order Euler operator differential equation. Linear Algebra Appls. 91 (1987), 1–12. MR 0888475
[4] L. Jódar: Explicit solutions of two-point boundary value problems. Math. Zeitschrift 199 (1988), 555–564. DOI 10.1007/BF01161644 | MR 0968321
[5] L. Jódar: On the Euler differential equation $A_2 t^2 X^{\prime \prime }+tA_1 X^{\prime }+A_0 X=0$. Applied Maths. Letters 2(3) (1989), 233–237. MR 1013885
[6] H. B. Keller and A. W. Wolfe: On the nonunique equilibrium states and buckling mechanism of spherical shells. J. Soc. Indust. Applied Maths. 13 (1965), 674–705. DOI 10.1137/0113045 | MR 0183174
[7] P. Lancaster and M. Tismenetsky: The theory of matrices. Academic Press, second ed., 1985. MR 0792300
[8] MACSYMA. MACSYMA Symbolics Inc., 1989. Zbl 0745.33007
[9] C. B. Moler: MATLAB user’s guide. Technical Report CS81-1 (1980), Computer Sci. Department, Univ. of New Mexico, Alburquerque.
[10] J. M. Ortega: Numerical analysis, a second course. Academic Press, 1972. MR 0403154 | Zbl 0248.65001
[11] C. R. Rao and S. K. Mitra: Generalized inverse of matrices and its applications. John-Wiley, 1971. MR 0338013
[12] P. Rentrop: Eine Taylorreihenmethode zur numerischen Lösung von Zwei-Punkt Randwertproblemen mit Anwendung auf singuläre Probleme der nichtlinearen Schalentheorie. TUM, Institut für Mathematik, München, 1977.
[13] E. Weinmüller: On the boundary value problem for systems of ordinary second order differential equations with a singularity of the first kind. SIAM J. Math. Anal. 15 (1984), 287–307. DOI 10.1137/0515023
Partner of
EuDML logo