[1] J. Diestel, J. J. Uhl Jr.:
Vector Measures. Mathematical Surveys, N.15, Amer. Math. Soc., 1977.
MR 0453964
[2] N. Dinculeanu:
Vector Integration and Stochastic Integration in Banach Space. John Wiley & Sons, 1999.
MR 1782432
[3] L. Di Piazza, V. Marraffa:
The McShane, ${\mathrm PU}$ and Henstock integrals of Banach valued functions. Czechoslovak Math. J. 52 (2002), 609–633.
DOI 10.1023/A:1021736031567 |
MR 1923266
[4] L. Di Piazza, V. Marraffa:
An equivalent definition of the vector-valued McShane integral by means of partitions of the unity. Studia Math. 151 (2002), 175–185.
DOI 10.4064/sm151-2-5 |
MR 1917952
[8] J. Jarník, J. Kurzweil:
A non absolutely convergent integral which admits transformation and can be used for integration on manifolds. Czechoslovak Math. J. 35 (1985), 116–139.
MR 0779340
[9] J. Jarník, J. Kurzweil:
A new and more powerful concept of the ${\mathrm PU}$-integral. Czechoslovak Math. J. 38 (1988), 8–48.
MR 0925939
[13] B. S. Thomson:
Differentiation. Handbook of Measure Theory, vol. I, E. Pap (ed.), Elsevier, North-Holland, 2002.
MR 1954615 |
Zbl 1028.28001