[1] D. H. Armitage:
A Nevanlinna theorem for superharmonic functions in half-spaces, with applications. J. London Math. Soc. 23 (1981), 137–157.
MR 0602246 |
Zbl 0427.31003
[3] J. L. Doob:
Classical Potential Theory and its Probabilistic Counterpart. Springer, New York, 1984.
MR 0731258 |
Zbl 0549.31001
[4] K. J. Falconer:
The Geometry of Fractal Sets. Cambridge University Press, Cambridge, 1985.
MR 0867284 |
Zbl 0587.28004
[5] W. K. Hayman:
Subharmonic Functions, Vol. 2. Academic Press, London, 1989.
MR 1049148
[6] W. K. Hayman, P. B. Kennedy: Subharmonic Functions, Vol. 1. Academic Press, London, 1976.
[14] N. A. Watson:
Mean values and associated measures of $\delta $-subharmonic functions. Math. Bohem. 127 (2002), 83–102.
MR 1895249 |
Zbl 0998.31002
[15] N. A. Watson:
A generalized Nevanlinna theorem for supertemperatures. Ann. Acad. Sci. Fenn. Math. 28 (2003), 35–54.
MR 1976828 |
Zbl 1035.31006