Previous |  Up |  Next

Article

Keywords:
quadratic non-residues; primitive roots; Fermat numbers
Summary:
In this article we study, using elementary and combinatorial methods, the distribution of quadratic non-residues which are not primitive roots modulo $p^h$ or $2p^h$ for an odd prime $p$ and $h\ge 1$ an integer.
References:
[1] A. Brauer: Über Sequenzen von Potenzresten. Sitzungsberichte Akad. Berlin (1928), 9–16. (German)
[2] M. Křížek, L. Somer: A necessary and sufficient condition for the primality of Fermat numbers. Math. Bohem. 126 (2001), 541–549. MR 1970256
[3] E. Vegh: Pairs of consecutive primitive roots modulo a prime. Proc. Amer. Math. Soc. 19 (1968), 1169–1170. DOI 10.1090/S0002-9939-1968-0230680-7 | MR 0230680 | Zbl 0167.04001
[4] E. Vegh: Primitive roots modulo a prime as consecutive terms of an arithmetic progression. J. Reine Angew. Math. 235 (1969), 185–188. MR 0242759 | Zbl 0172.32502
[5] E. Vegh: Arithmetic progressions of primitive roots of a prime II. J. Reine Angew. Math. 244 (1970), 108–111. MR 0266852 | Zbl 0205.34703
[6] E. Vegh: A note on the distribution of the primitive roots of a prime. J. Number Theory 3 (1971), 13–18. DOI 10.1016/0022-314X(71)90046-1 | MR 0285476 | Zbl 0211.37202
[7] E. Vegh: Arithmetic progressions of primitive roots of a prime III. J. Reine Angew. Math. 256 (1972), 130–137. MR 0308022 | Zbl 0243.10002
Partner of
EuDML logo