Article
Keywords:
Henstock-Kurzweil integral; McShane integral
Summary:
It is shown that a Banach-valued Henstock-Kurzweil integrable function on an $m$-dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function $f \: [0,1]^2 \longrightarrow {\mathbb{R}}$ and a continuous function $F \: [0,1]^2 \longrightarrow {\mathbb{R}}$ such that \[ (¶) \int _0^x \bigg \lbrace (¶) \int _0^yf(u,v) \mathrm{d}v \bigg \rbrace \mathrm{d}u = (¶) \int _0^y \bigg \lbrace (¶) \int _0^xf(u,v) \mathrm{d}u \bigg \rbrace \mathrm{d}v = F(x,y) \] for all $(x,y) \in [0,1]^2$.
References:
[5] R. A. Gordon:
The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics Volume 4, AMS, 1994.
MR 1288751 |
Zbl 0807.26004
[6] K. Karták:
Zur Theorie des mehrdimensionalen Integrals. Časopis Pěst. Mat. 80 (1955), 400–414. (Czech)
MR 0089249
[7] J. Kurzweil, J. Jarník:
Equi-integrability and controlled convergence of Perron-type integrable functions. Real Anal. Exchange 17 (1991/92), 110–139.
MR 1147361
[8] Peng-Yee Lee, R. Výborný:
The integral, An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14 (Cambridge University Press, 2000).
MR 1756319
[9] Tuo-Yeong Lee:
A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space. Proc. London Math. Soc. 87 (2003), 677–700.
MR 2005879 |
Zbl 1047.26006
[10] Tuo-Yeong Lee:
Some full characterizations of the strong McShane integral. Math. Bohem. 129 (2004), 305–312.
MR 2092716 |
Zbl 1080.26006
[11] Š. Schwabik, Guoju Ye:
The McShane and the Pettis integral of Banach space-valued functions defined on ${\mathbb{R}}^m$. Illinois J. Math. 46 (2002), 1125–1144.
DOI 10.1215/ijm/1258138470 |
MR 1988254
[12] G. P. Tolstov:
On the curvilinear and iterated integral. Trudy Mat. Inst. Steklov. 35 (1950), 102 pp. (Russian)
MR 0044612