Article
Keywords:
variation; oscillation; modulus of variation; selection theorem
Summary:
We compare a recent selection theorem given by Chistyakov using the notion of modulus of variation, with a selection theorem of Schrader based on bounded oscillation and with a selection theorem of Di Piazza-Maniscalco based on bounded ${\mathcal A},\Lambda $-oscillation.
References:
[1] Bongiorno B., Vetro P.:
Su un teorema di F. Riesz. Atti Acc. Sc. Lett. Arti Palermo, Ser. IV 37 (1977–78), 3–13.
MR 0624502
[2] Chanturiya Z. A.:
The modulus of variation of a function and its application in the theory of Fourier series. Soviet. Math. Dokl. 15 (1974), 67–71.
Zbl 0295.26008
[3] Chistyakov V. V.:
A selection principle for functions of a real variable. Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 53 (2005), 25–43.
MR 2199030 |
Zbl 1115.26006
[5] Di Piazza L., Maniscalco C.:
Selection theorems, based on generalized variation and oscillation. Rend. Circ. Mat. Palermo, Ser. II 35 (1986), 386–396.
DOI 10.1007/BF02843906 |
MR 0929621
[6] Helly E.: Über linear Funktionaloperationen. Sitzungsber. Naturwiss. Kl. Kaiserlichen Akad. Wiss. Wien 121 (1912), 265–297.