Article
Keywords:
regular variety; subregular variety; deductive system; congruence class; difference system
Summary:
An algebra ${\mathcal A}= (A,F)$ is subregular alias regular with respect to a unary term function $g$ if for each $\Theta , \Phi \in \text{Con}\,{\mathcal A}$ we have $\Theta = \Phi $ whenever $[g(a)]_{\Theta } = [g(a)]_{\Phi }$ for each $a\in A$. We borrow the concept of a deductive system from logic to modify it for subregular algebras. Using it we show that a subset $C\subseteq A$ is a class of some congruence on $\Theta $ containing $g(a)$ if and only if $C$ is this generalized deductive system. This method is efficient (needs a finite number of steps).
References:
[2] Bělohlávek R., Chajda I.:
Congruence classes in regular varieties. Acta Math. Univ. Comenian. (Bratislava) 68 (1999), 71–75.
MR 1711075
[3] Bělohlávek R., Chajda I.:
Relative deductive systems and congruence classes. Mult.- Valued Log. 5 (2000), 259–266.
MR 1784274
[4] Blok W., Köhler P., Pigozzi D.:
On the structure of varieties with equationally definable principal congruences II. Algebra Univers. 18 (1984), 334–379.
MR 0745497
[6] Chajda I., Rachůnek J.:
Relational characterization of permutable and $n$-permutable varieties. Czechoslovak Math. J. 33 (1983), 505–508.
MR 0721079
[8] Ursini A.:
Sulla varietá di algebre con una buona teoria degli ideali. Boll. Unione Mat. Ital. 6 (1972), 90–95.
MR 0314728