Previous |  Up |  Next

Article

Keywords:
Kurzweil integral; Young integral
Summary:
We propose an extended version of the Kurzweil integral which contains both the Young and the Kurzweil integral as special cases. The construction is based on a reduction of the class of $\delta $-fine partitions by excluding small sets.
References:
[1] G. Aumann: Reelle Funktionen. Springer, Berlin, 1954. (German) MR 0061652 | Zbl 0056.05202
[2] M. Brokate, P. Krejčí: Duality in the space of regulated functions and the play operator. Math. Z. (Accepted). MR 2020705
[3] T. H. Hildebrandt: Introduction to the Theory of Integration. Academic Press, New York and London, 1963. MR 0154957 | Zbl 0112.28302
[4] P. Krejčí, J. Kurzweil: A nonexistence result for the Kurzweil integral. Math. Bohem. 127 (2002), 571–580. MR 1942642
[5] P. Krejčí, Ph. Laurençot: Generalized variational inequalities. J. Convex Anal. 9 (2002), 159–183. MR 1917394
[6] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7 (1957), 418–449. MR 0111875 | Zbl 0090.30002
[7] Š. Schwabik: On the relation between Young’s and Kurzweil’s concept of Stieltjes integral. Čas. Pěst. Mat. 98 (1973), 237–251. MR 0322113 | Zbl 0266.26006
[8] Š. Schwabik: On a modified sum integral of Stieltjes type. Čas. Pěst. Mat. 98 (1973), 274–277. MR 0322114 | Zbl 0266.26007
[9] Š. Schwabik: Abstract Perron-Stieltjes integral. Math. Bohem. 121 (1996), 425–447. MR 1428144 | Zbl 0879.28021
[10] M. Tvrdý: Regulated functions and the Perron-Stieltjes integral. Čas. Pěst. Mat. 114 (1989), 187–209. MR 1063765
Partner of
EuDML logo