Article
Keywords:
Kurzweil integral; Young integral
Summary:
We propose an extended version of the Kurzweil integral which contains both the Young and the Kurzweil integral as special cases. The construction is based on a reduction of the class of $\delta $-fine partitions by excluding small sets.
References:
[2] M. Brokate, P. Krejčí:
Duality in the space of regulated functions and the play operator. Math. Z. (Accepted).
MR 2020705
[3] T. H. Hildebrandt:
Introduction to the Theory of Integration. Academic Press, New York and London, 1963.
MR 0154957 |
Zbl 0112.28302
[4] P. Krejčí, J. Kurzweil:
A nonexistence result for the Kurzweil integral. Math. Bohem. 127 (2002), 571–580.
MR 1942642
[5] P. Krejčí, Ph. Laurençot:
Generalized variational inequalities. J. Convex Anal. 9 (2002), 159–183.
MR 1917394
[6] J. Kurzweil:
Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7 (1957), 418–449.
MR 0111875 |
Zbl 0090.30002
[7] Š. Schwabik:
On the relation between Young’s and Kurzweil’s concept of Stieltjes integral. Čas. Pěst. Mat. 98 (1973), 237–251.
MR 0322113 |
Zbl 0266.26006
[8] Š. Schwabik:
On a modified sum integral of Stieltjes type. Čas. Pěst. Mat. 98 (1973), 274–277.
MR 0322114 |
Zbl 0266.26007
[10] M. Tvrdý:
Regulated functions and the Perron-Stieltjes integral. Čas. Pěst. Mat. 114 (1989), 187–209.
MR 1063765