[1] Ph. Angot, V. Dolejší, M. Feistauer, J. Felcman:
Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems. Appl. Math. 43 (1998), 263–310.
DOI 10.1023/A:1023217905340 |
MR 1627989
[2] F. Bassi, S. Rebay:
A high order discontinuous Galerkin method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997), 267–279.
DOI 10.1006/jcph.1996.5572 |
MR 1433934
[3] B. Cockburn:
Discontinuous Galerkin methods for convection dominated problems. High-Order Methods for Computational Physics, T. J. Barth, H. Deconinck (eds.), Lecture Notes in Computational Science and Engineering 9, Springer, Berlin, 1999, pp. 69–224.
MR 1712278 |
Zbl 0937.76049
[4] B. Cockburn, G. E. Karniadakis, C.-W. Shu:
Discontinuous Galerkin Methods. Lect. Notes Comput. Sci. Eng. 11., Springer, Berlin, 2000.
MR 1842160
[5] V. Dolejší:
Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1 (1998), 165–178.
DOI 10.1007/s007910050015
[6] V. Dolejší, M. Feistauer, C. Schwab:
A finite volume discontinuous Galerkin scheme for nonlinear convection-diffusion problems. Calcolo. Preprint, Forschungsinstitut für Mathematik ETH Zürich, Januar 2001 (to appear).
MR 1901200
[7] V. Dolejší, M. Feistauer, C. Schwab:
On some aspects of the discontinuous Galerkin finite element method for conservation laws. Mathematics and Computers in Simulation. The Preprint Series of the School of Mathematics, Charles University Prague, No. MATH-KNM-2001/5, 2001 (to appear).
MR 1984135
[8] M. Feistauer:
Mathematical Methods in Fluid Dynamics. Longman Scientific & Technical, Harlow, 1993.
Zbl 0819.76001
[9] M. Feistauer:
Numerical methods for compressible flow. Mathematical Fluid Mechanics. Recent Results and Open Questions, J. Neustupa, P. Penel (eds.), Birkhäuser, Basel, 2001, pp. 105–142.
MR 1865051 |
Zbl 1036.76035
[10] M. Feistauer, J. Felcman: Theory and applications of numerical schemes for nonlinear convection-diffusion problems and compressible Navier-Stokes equations. The Mathematics of Finite Elements and Applications, J. R. Whiteman (ed.), Highlights, 1996, Wiley, Chichester, 1997, pp. 175–194.
[11] M. Feistauer, J. Felcman, V. Dolejší: Numerical solution of compressible flow through cascades of profiles. Z. Angew. Math. Mech. 76 (1996), 297–300.
[13] M. Feistauer, J. Felcman, M. Lukáčová, G. Warnecke:
Error estimates for a combined finite volume—finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36 (1999), 1528–1548.
DOI 10.1137/S0036142997314695 |
MR 1706727
[15] J. Felcman:
On a 3D adaptation for compressible flow. Proceedings of the Conf. Finite Element Methods for Three-Dimensional Problems, Jyväskylä, June 27–July 1, 2000 (to appear).
Zbl 0996.76060
[16] J. Fořt, J. Halama, A. Jirásek, M. Kladrubský, K. Kozel: Numerical solution of several 2D and 3D internal and external flow problems. Numerical Modelling in Continuum Mechanics, M. Feistauer, R. Rannacher, K. Kozel (eds.), Matfyzpress, Praha, 1997, pp. 283–291.
[17] R. Hartmann, P. Houston: Adaptive discontinuous Galerkin finite element methods for nonlinear conservation laws. Preprint 2001–20, Mai 2001, SFB 359, Universität Heidelberg.
[18] J. T. Oden, I. Babuška, C. E. Baumann:
A discontinuous $hp$ finite element method for diffusion problems. J. Comput. Phys. 146 (1998), 491–519.
DOI 10.1006/jcph.1998.6032 |
MR 1654911
[19] S. P. Spekreijse:
Multigrid Solution of the Steady Euler Equations. Centrum voor Wiskunde en Informatica, Amsterdam, 1987.
MR 0942891