[1] A. Bigard, K. Keimel, S. Wolfenstein:
Groupes et Anneaux Réticulés. Springer, Berlin, 1977.
MR 0552653
[2] R. L. O. Cignoli, I. M. L. D’Ottaviano, D. Mundici:
Foundations of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000.
MR 1786097
[3] P. Conrad:
Lex-subgroups of lattice ordered groups. Czechoslovak Math. J. 18 (1968), 86–103.
MR 0225697 |
Zbl 0155.05902
[4] A. Di Nola, G. Georgescu, A. Iorgulescu:
Pseudo $BL$-algebras: Part I. Multiple-Valued Logic 8 (2002), 673–714.
MR 1948853
[6] G. Georgescu, A. Iorgulescu:
Pseudo $MV$-algebras. Multiple Valued Logic 6 (2001), 95–135.
MR 1817439
[7] P. Hájek:
Metamathematics of Fuzzy Logic. Kluwer, Amsterdam, 1998.
MR 1900263
[8] D. Hort, J. Rachůnek:
Lex ideals of generalized $MV$-algebras. C. S. Calude, M. J. Dinneen, S. Sburlan (eds.), Combinatorics, Computability and Logic, Proc. DMTCS’01, Springer, London, 2001, pp. 125–136.
MR 1934826
[9] T. Kovář: A general theory of dually residuated lattice ordered monoids. Thesis, Palacký Univ. Olomouc, 1996.
[11] J. Kühr:
Ideals of noncommutative $DR\ell $-monoids. (to appear).
MR 2121658
[12] J. Kühr:
Prime ideals and polars in $DR\ell $-monoids and pseudo $BL$-algebras. Math. Slovaca 53 (2003), 233–246.
MR 2025020
[13] J. Kühr:
Representable dually residuated lattice ordered monoids. (to appear).
MR 2070377
[15] J. Rachůnek:
$MV$-algebras are categorically equivalent to a class of $DR\ell $-semigroups. Math. Bohem. 123 (1998), 437–441.
MR 1667115
[16] J. Rachůnek:
A duality between algebras of basic logic and bounded representable $DR\ell $-monoids. Math. Bohem. 126 (2001), 561–569.
MR 1970259
[18] J. Rachůnek, D. Šalounová:
Direct decompositions of dually residuated lattice ordered monoids. (to appear).
MR 2118156
[19] D. Šalounová:
Lex-ideals of $DR\ell $-monoids and algebras. Math. Slovaca 53 (2003), 321–330.
MR 2025465