[1] Chicone, C.; Latushkin, Y.:
Evolution Semigroups in Dynamical Systems and Differential Equations. Math. Surveys and Monographs, vol. 70, Amer. Math. Soc., 1999.
MR 1707332
[2] Chow, S. N.; Leiva, H.:
Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach spaces. J. Differ. Equations 120 (1995), 429–477.
DOI 10.1006/jdeq.1995.1117 |
MR 1347351
[3] Chow, S. N.; Leiva, H.:
Unbounded perturbation of the exponential dichotomy for evolution equations. J. Differ. Equations 129 (1996), 509–531.
DOI 10.1006/jdeq.1996.0125 |
MR 1404391
[4] Datko, R.:
Uniform asymptotic stability of evolutionary processes in Banach spaces. SIAM J. Math. Anal. 3 (1972), 428–445.
DOI 10.1137/0503042 |
MR 0320465
[5] Henry, D.:
Geometric Theory of Semilinear Parabolic Equations. Springer, New York, 1981.
MR 0610244 |
Zbl 0456.35001
[6] Latushkin, Y.; Montgomery-Smith, S.; Randolph, T.:
Evolutionary semigroups and dichotomy of linear skew-product flows on spaces with Banach fibers. J. Differ. Equations 125 (1996), 73–116.
DOI 10.1006/jdeq.1996.0025 |
MR 1376061
[7] Latushkin, Y.; Schnaubelt, R.:
Evolution semigroups, translation algebras and exponential dichotomy of cocycles. J. Differ. Equations 159 (1999), 321–369.
DOI 10.1006/jdeq.1999.3668 |
MR 1730724
[8] Megan, M.; Sasu, B.; Sasu, A. L.:
On nonuniform exponential dichotomy of evolution operators in Banach spaces. Integral Equations Operator Theory 44 (2002), 71–78.
DOI 10.1007/BF01197861 |
MR 1913424
[9] Megan, M.; Sasu, A. L.; Sasu, B.; Pogan, A.:
Exponential stability and unstability of semigroups of linear operators in Banach spaces. Math. Inequal. Appl. 5 (2002), 557–567.
MR 1907541
[10] Megan, M.; Sasu, A. L.; Sasu, B.:
On uniform exponential stability of linear skew- product semiflows in Banach spaces. Bull. Belg. Math. Soc. - Simon Stevin 9 (2002), 143–154.
DOI 10.36045/bbms/1102715145 |
MR 1905653
[12] Megan, M.; Sasu, A. L.; Sasu, B.:
Discrete admissibility and exponential dichotomy for evolution families. Discrete Contin. Dyn. Syst. 9 (2003), 383–397.
MR 1952381
[13] Megan, M.; Sasu, A. L.; Sasu, B.:
On uniform exponential dichotomy for linear skew-product semiflows. Bull. Belg. Math. Soc. - Simon Stevin 10 (2003), 1–21.
DOI 10.36045/bbms/1047309409 |
MR 2032321
[14] Megan, M.; Sasu, B.; Sasu, A. L.:
Exponential expansiveness and complete admissibility for evolution families. Accepted in Czechoslovak Math. J.
MR 2086730
[15] Megan, M.; Sasu, A. L.; Sasu, B.: Perron conditions for pointwise and global exponential dichotomy of linear skew-product semiflows. Accepted in Integral Equations Operator Theory.
[16] Megan, M.; Sasu, A. L.; Sasu, B.: Theorems of Perron type for uniform exponential stability of linear skew-product semiflows. Accepted in Dynam. Contin. Discrete Impuls. Systems.
[18] Van Neerven, J.:
The Asymptotic Behaviour of Semigroups of Linear Operators. Birkhäuser, 1996.
MR 1409370 |
Zbl 0905.47001
[19] Pazy, A.:
Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin, 1983.
MR 0710486 |
Zbl 0516.47023
[20] Pliss, V. A.; Sell, G. R.:
Robustness of exponential dichotomies in infinite-dimensional dynamical systems. J. Dynam. Differ. Equ. 3 (1999), 471–513.
DOI 10.1023/A:1021913903923 |
MR 1693858
[21] Pliss, V. A.; Sell, G. R.:
Perturbations of normally hyperbolic manifolds with applications to the Navier-Stokes equation. J. Differ. Equations 169 (2001), 396–492.
DOI 10.1006/jdeq.2000.3905 |
MR 1808472
[23] Sacker, R. J.; Sell, G. R.:
Lifting properties in skew-product flows with applications to differential equations. Mem. Am. Math. Soc. 190, Providence, Rhode Island, 1977.
MR 0448325