Previous |  Up |  Next

Article

Keywords:
linear skew-product flow; uniform exponential stability; uniform exponential instability
Summary:
We give characterizations for uniform exponential stability and uniform exponential instability of linear skew-product flows in terms of Banach sequence spaces and Banach function spaces, respectively. We present a unified approach for uniform exponential stability and uniform exponential instability of linear skew-product flows, extending some stability theorems due to Neerven, Datko, Zabczyk and Rolewicz.
References:
[1] Chicone, C.; Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Math. Surveys and Monographs, vol. 70, Amer. Math. Soc., 1999. MR 1707332
[2] Chow, S. N.; Leiva, H.: Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach spaces. J. Differ. Equations 120 (1995), 429–477. DOI 10.1006/jdeq.1995.1117 | MR 1347351
[3] Chow, S. N.; Leiva, H.: Unbounded perturbation of the exponential dichotomy for evolution equations. J. Differ. Equations 129 (1996), 509–531. DOI 10.1006/jdeq.1996.0125 | MR 1404391
[4] Datko, R.: Uniform asymptotic stability of evolutionary processes in Banach spaces. SIAM J. Math. Anal. 3 (1972), 428–445. DOI 10.1137/0503042 | MR 0320465
[5] Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, New York, 1981. MR 0610244 | Zbl 0456.35001
[6] Latushkin, Y.; Montgomery-Smith, S.; Randolph, T.: Evolutionary semigroups and dichotomy of linear skew-product flows on spaces with Banach fibers. J. Differ. Equations 125 (1996), 73–116. DOI 10.1006/jdeq.1996.0025 | MR 1376061
[7] Latushkin, Y.; Schnaubelt, R.: Evolution semigroups, translation algebras and exponential dichotomy of cocycles. J. Differ. Equations 159 (1999), 321–369. DOI 10.1006/jdeq.1999.3668 | MR 1730724
[8] Megan, M.; Sasu, B.; Sasu, A. L.: On nonuniform exponential dichotomy of evolution operators in Banach spaces. Integral Equations Operator Theory 44 (2002), 71–78. DOI 10.1007/BF01197861 | MR 1913424
[9] Megan, M.; Sasu, A. L.; Sasu, B.; Pogan, A.: Exponential stability and unstability of semigroups of linear operators in Banach spaces. Math. Inequal. Appl. 5 (2002), 557–567. MR 1907541
[10] Megan, M.; Sasu, A. L.; Sasu, B.: On uniform exponential stability of linear skew- product semiflows in Banach spaces. Bull. Belg. Math. Soc. - Simon Stevin 9 (2002), 143–154. DOI 10.36045/bbms/1102715145 | MR 1905653
[11] Megan, M.; Sasu, A. L.; Sasu, B.: Stabilizability and controllability of systems associated to linear skew-product semiflows. Rev. Mat. Complut. 15 (2002), 599–618. DOI 10.5209/rev_REMA.2002.v15.n2.16932 | MR 1951828
[12] Megan, M.; Sasu, A. L.; Sasu, B.: Discrete admissibility and exponential dichotomy for evolution families. Discrete Contin. Dyn. Syst. 9 (2003), 383–397. MR 1952381
[13] Megan, M.; Sasu, A. L.; Sasu, B.: On uniform exponential dichotomy for linear skew-product semiflows. Bull. Belg. Math. Soc. - Simon Stevin 10 (2003), 1–21. DOI 10.36045/bbms/1047309409 | MR 2032321
[14] Megan, M.; Sasu, B.; Sasu, A. L.: Exponential expansiveness and complete admissibility for evolution families. Accepted in Czechoslovak Math. J. MR 2086730
[15] Megan, M.; Sasu, A. L.; Sasu, B.: Perron conditions for pointwise and global exponential dichotomy of linear skew-product semiflows. Accepted in Integral Equations Operator Theory.
[16] Megan, M.; Sasu, A. L.; Sasu, B.: Theorems of Perron type for uniform exponential stability of linear skew-product semiflows. Accepted in Dynam. Contin. Discrete Impuls. Systems.
[17] Meyer-Nieberg, P.: Banach Lattices. Springer, Berlin, 1991. MR 1128093 | Zbl 0743.46015
[18] Van Neerven, J.: The Asymptotic Behaviour of Semigroups of Linear Operators. Birkhäuser, 1996. MR 1409370 | Zbl 0905.47001
[19] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin, 1983. MR 0710486 | Zbl 0516.47023
[20] Pliss, V. A.; Sell, G. R.: Robustness of exponential dichotomies in infinite-dimensional dynamical systems. J. Dynam. Differ. Equ. 3 (1999), 471–513. DOI 10.1023/A:1021913903923 | MR 1693858
[21] Pliss, V. A.; Sell, G. R.: Perturbations of normally hyperbolic manifolds with applications to the Navier-Stokes equation. J. Differ. Equations 169 (2001), 396–492. DOI 10.1006/jdeq.2000.3905 | MR 1808472
[22] Rolewicz, S.: On uniform $N$-equistability. J. Math. Anal. Appl. 115 (1986), 434–441. DOI 10.1016/0022-247X(86)90006-5 | MR 0836237 | Zbl 0597.34064
[23] Sacker, R. J.; Sell, G. R.: Lifting properties in skew-product flows with applications to differential equations. Mem. Am. Math. Soc. 190, Providence, Rhode Island, 1977. MR 0448325
[24] Sacker, R. J.; Sell, G. R.: Dichotomies for linear evolutionary equations in Banach spaces. J. Differ. Equations 113 (1994), 17–67. DOI 10.1006/jdeq.1994.1113 | MR 1296160
[25] Zabczyk, J.: Remarks on the control of discrete-time distributed parameter systems. SIAM J. Control 12 (1974), 721–735. DOI 10.1137/0312056 | MR 0410506 | Zbl 0254.93027
Partner of
EuDML logo