[1] Baláž, V., Červeňanský, J., Kostyrko, P., Šalát, T.: $I$-convergence and $I$-continuity of real functions. Faculty of Natural Sciences, Constantine the Philosoper University, Nitra, Acta Mathematica 5, 43–50.
[5] Halberstem, H., Roth, K. F.: Sequences. Springer, New York, 1993.
[7] Kostyrko, P., Mačaj, M., Šalát, T., Sleziak, M.: $I$-convergence and a termal $I$-limit points. (to appear).
[8] Kuratowski, K.: Topologie I. PWN, Warszawa, 1962.
[9] Lahiri, B. K., Das, Pratulananda:
Further results on $I$-limit superior and $I$-limit inferior. Math. Commun. 8 (2003), 151–156.
MR 2026393
[10] Mačaj M., Šalát, T.:
Statistical convergence of subsequences of a given sequence. Math. Bohem. 126 (2001), 191–208.
MR 1826482
[11] Niven, I., Zuckerman, H. S.:
An introduction to the theory of numbers. 4th ed., John Wiley, New York, 1980.
MR 0572268
[12] Šalát, T.:
On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139–150.
MR 0587239
[13] Šalát, T., Tripathy, B. C., Ziman, M.:
A note on $I$-convergence field. (to appear).
MR 2203460
[14] Schoenberg, I. J.:
The integrability of certain function and related summability methods. Am. Math. Mon. 66 (1959), 361–375.
DOI 10.2307/2308747 |
MR 0104946