[1] T. S. Angell, R. E. Kleinman, J. Král:
Layer potentials on boundaries with corners and edges. Čas. Pěst. Mat. 113 (1988), 387–402.
MR 0981880
[2] M. Balavadze, I. Kiguradze, V. Kokilashvili (eds.): Continuum Mechanics and Related Problems of Analysis. Proceedings of the Internat. Symposium Dedicated to the Centenary of Academician N. Muskhelishvili. Tbilisi, 1991.
[3] Yu. D. Burago, V. G. Maz’ ya: Potential theory and function theory for irregular regions. Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian)
[4] M. Chlebík: Tricomi potentials. Thesis. Mathematical Institute of the Czechoslovak Academy of Sciences. Praha, 1988. (Slovak)
[7] I. Gohberg, A. Marcus: Some remarks on topologically equivalent norms. Izvestija Mold. Fil. Akad. Nauk SSSR 10 (1960), 91–95. (Russian)
[9] J. Král:
Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer, Berlin, 1980.
MR 0590244
[10] J. Král:
The Fredholm-Radon method in potential theory. Continuum Mechanics and Related Problems of Analysis. Proceedings of the Internat. Symposium Dedicated to the Centenary of Academician N. Muskhelishvili, Tbilisi, 1991, pp. 390–397.
MR 1379845
[11] J. Král, D. Medková:
Angular limits of double layer potentials. Czechoslovak Math. J. 45 (1995), 267–291.
MR 1331464
[12] J. Král, D. Medková:
Essential norms of a potential theoretic boundary integral operator in $L^1$. Math. Bohem. 123 (1998), 419–436.
MR 1667114
[13] J. Král, W. L. Wendland:
Some examples concerning applicability of the Fredholm -Radon method in potential theory. Aplikace matematiky 31 (1986), 293–308.
MR 0854323
[14] J. Lukeš, J. Malý:
Measure and Integral. Matfyzpress, 1994.
MR 2316454
[15] V. G Maz’ya:
Boundary Integral Equations. Encyclopaedia of Mathematical Sciences vol. 27, Analysis IV. Springer, 1991.
DOI 10.1007/978-3-642-58175-5_2