[1] Anderson, M., Feil, T.:
Lattice-ordered groups. An Introduction. D. Reidel., Dordrecht, 1988.
MR 0937703
[3] Chang, C. C.:
A new proof of the Łukasziewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80.
MR 0122718
[4] Cignoli, R.:
Free lattice-ordered abelian groups and varieties of $MV$-algebras. Proc. IX. Latin. Amer. Symp. Math. Logic, Part 1, Not. Log. Mat. 38 (1993), 113–118.
MR 1332526 |
Zbl 0827.06012
[5] Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D.:
Algebraic Foundations of Many- Valued Reasoning. Kluwer, Dordrecht, 2000.
MR 1786097
[6] Chajda, I.:
Lattices in quasiordered sets. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 31 (1992), 6–12.
MR 1212600 |
Zbl 0773.06002
[7] Chajda, I.:
Congruence properties of algebras in nilpotent shifts of varieties. General Algebra and Discrete Mathematics (K. Denecke, O. Lüders, eds.), Heldermann, Berlin, 1995, pp. 35–46.
MR 1336150 |
Zbl 0821.08009
[9] Chajda, I., Graczyńska, E.:
Algebras presented by normal identities. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 38 (1999), 49–58.
MR 1767191
[10] Chajda, I., Halaš, R., Kühr, J.:
Distributive lattices with sectionally antitone involutions. (to appear).
MR 2160352
[11] Mel’nik, I. I.:
Nilpotent shifts of varieties. Math. Notes 14 (1973), 692–696. (Russian)
MR 0366782
[13] Mundici, D.:
$MV$-algebras are categorically equivalent to bouded commutative $BCK$- algebras. Math. Japon. 31 (1986), 889–894.
MR 0870978
[14] Rachůnek, J.:
$MV$-algebras are categorically equivalent to a class of ${DRl}_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441.
MR 1667115