Previous |  Up |  Next

Article

Keywords:
$MV$-algebra; abelian lattice-ordered group; $q$-lattice; normalization of a variety
Summary:
We consider algebras determined by all normal identities of $MV$-algebras, i.e. algebras of many-valued logics. For such algebras, we present a representation based on a normalization of a sectionally involutioned lattice, i.e. a $q$-lattice, and another one based on a normalization of a lattice-ordered group.
References:
[1] Anderson, M., Feil, T.: Lattice-ordered groups. An Introduction. D. Reidel., Dordrecht, 1988. MR 0937703
[2] Chang, C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[3] Chang, C. C.: A new proof of the Łukasziewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80. MR 0122718
[4] Cignoli, R.: Free lattice-ordered abelian groups and varieties of $MV$-algebras. Proc. IX. Latin. Amer. Symp. Math. Logic, Part 1, Not. Log. Mat. 38 (1993), 113–118. MR 1332526 | Zbl 0827.06012
[5] Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many- Valued Reasoning. Kluwer, Dordrecht, 2000. MR 1786097
[6] Chajda, I.: Lattices in quasiordered sets. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 31 (1992), 6–12. MR 1212600 | Zbl 0773.06002
[7] Chajda, I.: Congruence properties of algebras in nilpotent shifts of varieties. General Algebra and Discrete Mathematics (K. Denecke, O. Lüders, eds.), Heldermann, Berlin, 1995, pp. 35–46. MR 1336150 | Zbl 0821.08009
[8] Chajda, I.: Normally presented varieties. Algebra Universalis 34 (1995), 327–335. DOI 10.1007/BF01182089 | MR 1350845 | Zbl 0842.08007
[9] Chajda, I., Graczyńska, E.: Algebras presented by normal identities. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 38 (1999), 49–58. MR 1767191
[10] Chajda, I., Halaš, R., Kühr, J.: Distributive lattices with sectionally antitone involutions. (to appear). MR 2160352
[11] Mel’nik, I. I.: Nilpotent shifts of varieties. Math. Notes 14 (1973), 692–696. (Russian) MR 0366782
[12] Mundici, D.: Interpretation of AF $C^{*}$-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173 | Zbl 0597.46059
[13] Mundici, D.: $MV$-algebras are categorically equivalent to bouded commutative $BCK$- algebras. Math. Japon. 31 (1986), 889–894. MR 0870978
[14] Rachůnek, J.: $MV$-algebras are categorically equivalent to a class of ${DRl}_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441. MR 1667115
Partner of
EuDML logo