Previous |  Up |  Next

Article

Keywords:
$G$-space; equivariant map; pseudo-Euclidean geometry; functional equation
Summary:
In this note all vectors and $\varepsilon $-vectors of a system of $m\le n$ linearly independent contravariant vectors in the $n$-dimensional pseudo-Euclidean geometry of index one are determined. The problem is resolved by finding the general solution of the functional equation $F( A{\underset{1}{\rightarrow }u}, A{\underset{2}{\rightarrow }u},\dots ,A{\underset{m}{\rightarrow }u}) =( \det A)^{\lambda }\cdot A\cdot F( {\underset{1}{\rightarrow }u},{\underset{2}{\rightarrow }u},\dots , {\underset{m}{\rightarrow }u})$ with $\lambda =0$ and $\lambda =1$, for an arbitrary pseudo-orthogonal matrix $A$ of index one and given vectors $ {\underset{1}{\rightarrow }u},{\underset{2}{\rightarrow }u},\dots ,{\underset{m}{\rightarrow }u}.$
References:
[1] J. Aczél, S. Gołąb: Functionalgleichungen der Theorie der geometrischen Objekte. P.W.N. Warszawa, 1960. MR 0133763
[2] L. Bieszk, E. Stasiak: Sur deux formes équivalentes de la notion de $( r,s)$-orientation de la géométrie de Klein. Publ. Math. Debrecen 35 (1988), 43–50. MR 0971951
[3] M. Kucharzewski: Über die Grundlagen der Kleinschen Geometrie. Period. Math. Hung. 8 (1977), 83–89. DOI 10.1007/BF02018051 | MR 0493695 | Zbl 0335.50001
[4] A. Misiak, E. Stasiak: Equivariant maps between certain $G$-spaces with $G=O( n-1,n)$. Math. Bohem. 126 (2001), 555–560. MR 1970258
[5] E. Stasiak: Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1. Publ. Math. Debrecen 57 (2000), 55–69. MR 1771671 | Zbl 0966.53012
Partner of
EuDML logo