Article
Keywords:
$G$-space; equivariant map; pseudo-Euclidean geometry; functional equation
Summary:
In this note all vectors and $\varepsilon $-vectors of a system of $m\le n$ linearly independent contravariant vectors in the $n$-dimensional pseudo-Euclidean geometry of index one are determined. The problem is resolved by finding the general solution of the functional equation $F( A{\underset{1}{\rightarrow }u}, A{\underset{2}{\rightarrow }u},\dots ,A{\underset{m}{\rightarrow }u}) =( \det A)^{\lambda }\cdot A\cdot F( {\underset{1}{\rightarrow }u},{\underset{2}{\rightarrow }u},\dots , {\underset{m}{\rightarrow }u})$ with $\lambda =0$ and $\lambda =1$, for an arbitrary pseudo-orthogonal matrix $A$ of index one and given vectors $ {\underset{1}{\rightarrow }u},{\underset{2}{\rightarrow }u},\dots ,{\underset{m}{\rightarrow }u}.$
References:
[1] J. Aczél, S. Gołąb:
Functionalgleichungen der Theorie der geometrischen Objekte. P.W.N. Warszawa, 1960.
MR 0133763
[2] L. Bieszk, E. Stasiak:
Sur deux formes équivalentes de la notion de $( r,s)$-orientation de la géométrie de Klein. Publ. Math. Debrecen 35 (1988), 43–50.
MR 0971951
[4] A. Misiak, E. Stasiak:
Equivariant maps between certain $G$-spaces with $G=O( n-1,n)$. Math. Bohem. 126 (2001), 555–560.
MR 1970258
[5] E. Stasiak:
Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1. Publ. Math. Debrecen 57 (2000), 55–69.
MR 1771671 |
Zbl 0966.53012