Previous |  Up |  Next

Article

Keywords:
Boolean function graph; global domination number; neighborhood number
Summary:
For any graph $G$, let $V(G)$ and $E(G)$ denote the vertex set and the edge set of $G$ respectively. The Boolean function graph $B(G, L(G), \mathop {\mathrm NINC})$ of $G$ is a graph with vertex set $V(G)\cup E(G)$ and two vertices in $B(G, L(G), \mathop {\mathrm NINC})$ are adjacent if and only if they correspond to two adjacent vertices of $G$, two adjacent edges of $G$ or to a vertex and an edge not incident to it in $G$. In this paper, global domination number, total global domination number, global point-set domination number and neighborhood number for this graph are obtained.
References:
[1] J. Akiyama, T. Hamada, I. Yoshimura: On characterizations of the middle graphs. Tru. Math. (1975), 35–39. MR 0414436
[2] M. Behzad: A criterion for the planarity of the total graph of a graph. Proc. Cambridge Philos. Soc. 63 (1967), 679–681. MR 0211896 | Zbl 0158.20703
[3] S. B. Chikkodimath, E. Sampathkumar: Semi total graphs II. Graph Theory Research Report, Karnatak University (1973), 5–9.
[4] E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi: Total domination in graphs. Networks 10 (1980), 211–219. DOI 10.1002/net.3230100304 | MR 0584887
[5] T. Hamada, I. Yoshimura: Traversability and connectivity of the middle graph of a graph. Discrete Math. 14 (1976), 247–256. DOI 10.1016/0012-365X(76)90037-6 | MR 0414435
[6] F. Harary: Graph Theory. Addison-Wesley, Reading, Mass., 1969. MR 0256911 | Zbl 0196.27202
[7] T. N. Janakiraman, S. Muthammai, M. Bhanumathi: On the Boolean function graph of a graph and on its complement. Math. Bohem. 130 (2005), 113–134. MR 2148646
[8] V. R. Kulli, B. Janakiram: The total global domination number of a graph. Indian J. Pure Appl. Math. 27 (1996), 537–542. MR 1390876
[9] O. Ore: Theory of Graphs. Amer. Math. Soc. Colloq. Publ. 38, Providence, 1962. MR 0150753 | Zbl 0105.35401
[10] L. Pushpalatha: The global point-set domination number of a graph. Indian J. Pure Appl. Math. 28 (1997), 47–51. MR 1442817 | Zbl 0871.05036
[11] E. Sampathkumar: The global domination number of a graph. J. Math. Phys. Sci. 23 (1989), 377–385. MR 1023310 | Zbl 0729.05045
[12] E. Sampathkumar, Prabha S. Neeralagi: The neighborhood number of a graph. Indian J. Pure Appl. Math. 16 (1985), 126–132. MR 0780299
[13] E. Sampathkumar, L. Pushpa Latha: Point-set domination number of a graph. Indian J. Pure Appl. Math. 24 (1993), 225–229. MR 1218532
[14] E. Sampathkumar, H. B. Walikar: The connected domination number of a graph. J. Math. Phys. Sci. 13, 607–613. MR 0575817
[15] D. V. S. Sastry, B. Syam Prasad Raju: Graph equations for line graphs, total graphs, middle graphs and quasi-total graphs. Discrete Math. 48 (1984), 113–119. DOI 10.1016/0012-365X(84)90137-7 | MR 0732207
[16] H. Whitney: Congruent graphs and the connectivity of graphs. Amer. J. Math. 54 (1932), 150–168. DOI 10.2307/2371086 | MR 1506881 | Zbl 0003.32804
Partner of
EuDML logo