[1] E. Barvínek: O rozložení nulových bodů řešení lineární diferenciální rovnice $y^{\prime \prime }=Q(t)y$ a jejich derivací. Acta F. R. N. Univ. Comenian 5 (1961), 465–474.
[2] O. Borůvka:
Linear Differential Transformations of the Second Order. The English Univ. Press, London, 1971.
MR 0463539
[4] A. R. Forsyth: Invariants, covariants and quotient-derivatives associated with linear differential equations. Philos. Trans. Roy. Soc. London Ser. A 179 (1899), 377–489.
[5] M. Hasse, L. Michler:
Theorie der Kategorien. VEB, Berlin, 1966.
MR 0213411
[7] M. Kuczma, B. Choczewski, R. Ger:
Iterative Functional Equations. Cambridge Univ. Press, Cambridge, 1989.
MR 1067720
[8] E. E. Kummer: De generali quadam aequatione differentiali tertii ordinis (Progr. Evang. Königl. Stadtgymnasium Liegnitz 1834). J. Reine Angew. Math. (reprinted) 100 (1887), 1–10.
[9] E. Laguerre: Sur les équations differérentielles linéaires du troisième ordre. C. R. Acad. Sci. Paris 88 (1879), 116–118.
[10] F. Neuman:
Geometrical approach to linear differential equations of the $n$-th order. Rend. Mat. 5 (1972), 579–602.
MR 0324141 |
Zbl 0257.34029
[11] F. Neuman:
Simultaneous solutions of a system of Abel equations and differential equations with several deviations. Czechoslovak Math. J. 32 (1982), 488–494.
MR 0669790 |
Zbl 0524.34070
[12] F. Neuman:
Criterion of global equivalence of linear differential equations. Proc. Roy. Soc. Edinburgh 97 A (1984), 217–221.
MR 0751194 |
Zbl 0552.34009
[13] F. Neuman:
On Halphen and Laguerre-Forsyth canonical forms for linear differential equations. Archivum Math. (Brno) 26 (1990), 147–154.
MR 1188274
[14] F. Neuman:
Transformations and canonical forms of functional-differential equations. Proc. Roy. Soc. Edinburgh 115 A (1990), 349–357.
MR 1069527
[15] F. Neuman:
On a canonical parametrization of continuous functions. Opuscula Mathematica (Kraków) 6 (1990), 185–191.
MR 1120254 |
Zbl 0779.39002
[16] F. Neuman:
Global Properties of Linear Ordinary Differential Equations. Mathematics and Its Applications (East European Series) 52, Kluwer Acad. Publ., Dordrecht, 1991.
MR 1192133 |
Zbl 0784.34009
[20] F. Neuman:
Smooth and discrete systems—algebraic, analytic, and geometrical representations. Adv. Difference Equ. 2 (2004), 111–120.
MR 2064086 |
Zbl 1077.34008
[22] E. J. Wilczynski: Projective Differential Geometry of Curves and Ruled Surfaces. Teubner, Leipzig, 1906.