Previous |  Up |  Next

Article

Keywords:
$L$-topology; compactness; $\alpha $-compactness; countable $\alpha $-compactness; $\alpha $-Lindelöf property; $\alpha $-irresolute map; $\alpha $-continuous map
Summary:
A new form of $\alpha $-compactness is introduced in $L$-topological spaces by $\alpha $-open $L$-sets and their inequality where $L$ is a complete de Morgan algebra. It doesn’t rely on the structure of the basis lattice $L$. It can also be characterized by means of $\alpha $-closed $L$-sets and their inequality. When $L$ is a completely distributive de Morgan algebra, its many characterizations are presented and the relations between it and the other types of compactness are discussed. Countable $\alpha $-compactness and the $\alpha $-Lindelöf property are also researched.
References:
[1] H. Aygün: $\alpha $-compactness in $L$-fuzzy topological spaces. Fuzzy Sets Syst. 116 (2000), 317–324. MR 1792325
[2] K. K. Azad: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weak continuity. J. Math. Anal. Appl. 82 (1981), 14–32. DOI 10.1016/0022-247X(81)90222-5 | MR 0626738
[3] S. Z. Bai: Fuzzy strongly semiopen sets and fuzzy strong semicontinuity. Fuzzy Sets Syst. 52 (1992), 345–351. MR 1198195 | Zbl 0795.54009
[4] S. Z. Bai: The SR-compactness in $L$-fuzzy topological spaces. Fuzzy Sets Syst. 87 (1997), 219–225. MR 1442416 | Zbl 0912.54009
[5] P. Dwinger: Characterization of the complete homomorphic images of a completely distributive complete lattice. I. Indagationes Mathematicae (Proceedings) 85 (1982), 403–414. DOI 10.1016/1385-7258(82)90034-8 | MR 0683528 | Zbl 0503.06012
[6] G. Gierz, et al.: A Compendium of Continuous Lattices. Springer, Berlin, 1980. MR 0614752 | Zbl 0452.06001
[7] S. R. T. Kudri: Compactness in $L$-fuzzy topological spaces. Fuzzy Sets Syst. 67 (1994), 329–336. MR 1304566 | Zbl 0842.54011
[8] S. G. Li, S. Z. Bai, N. Li: The near SR-compactness axiom in $L$-topological spaces. Fuzzy Sets Syst. 147 (2004), 307–316. MR 2089294
[9] Y. M. Liu, M. K. Luo: Fuzzy Topology. World Scientific, Singapore, 1997. MR 1643076
[10] R. Lowen: A comparison of different compactness notions in fuzzy topological spaces. J. Math. Anal. Appl. 64 (1978), 446–454. DOI 10.1016/0022-247X(78)90052-5 | MR 0497443 | Zbl 0381.54004
[11] S. N. Maheshwari, S. S. Thakur: On $\alpha $-irresolute mappings. Tamkang J. Math. 11 (1981), 209–214. MR 0696921
[12] S. N. Maheshwari, S. S. Thakur: On $\alpha $-compact spaces. Bull. Inst. Math. Acad. Sinica 13 (1985), 341–347. MR 0866569
[13] O. Njåstad: On some classes of nearly open sets. Pacific J. Math. 15 (1965), 961–970. DOI 10.2140/pjm.1965.15.961 | MR 0195040
[14] A. S. B. Shahana: On fuzzy strong semicontinuity and fuzzy precontinuity. Fuzzy Sets Syst. 44 (1991), 303–308. MR 1140864
[15] F.-G. Shi: Fuzzy compactness in $L$-topological spaces. Fuzzy Sets Syst., submitted. Zbl 1080.54004
[16] F.-G. Shi: Countable compactness and the Lindelöf property of $L$-fuzzy sets. Iran. J. Fuzzy Syst. 1 (2004), 79–88. MR 2138608 | Zbl 1202.54007
[17] F.-G. Shi: Theory of $L_\beta $-nested sets and $L_\alpha $-nested and their applications. Fuzzy Systems and Mathematics 4 (1995), 65–72. (Chinese) MR 1384670
[18] S. S. Thakur, R. K. Saraf: $\alpha $-compact fuzzy topological spaces. Math. Bohem. 120 (1995), 299–303. MR 1369688
[19] G. J. Wang: Theory of $L$-fuzzy Topological Spaces. Shanxi Normal University Press, Xian, 1988. (Chinese)
Partner of
EuDML logo