Previous |  Up |  Next

Article

Keywords:
nonlinearizable elliptic equations; jumping nonlinearities; global bifurcation; half-eigenvalue
Summary:
A bifurcation problem for the equation \[ \Delta u+\lambda u-\alpha u^++\beta u^-+g(\lambda ,u)=0 \] in a bounded domain in $^N$ with mixed boundary conditions, given nonnegative functions $\alpha ,\beta \in L_\infty $ and a small perturbation $g$ is considered. The existence of a global bifurcation between two given simple eigenvalues $\lambda ^{(1)},\lambda ^{(2)}$ of the Laplacian is proved under some assumptions about the supports of the functions $\alpha ,\beta $. These assumptions are given by the character of the eigenfunctions of the Laplacian corresponding to $\lambda ^{(1)}, \lambda ^{(2)}$.
References:
[1] M. Arias, J. Campos, M. Cuesta, J.-P. Gossez: Sur certains problemes elliptiques asymetriques avec poids indefinis. C. R. Acad. Sci., Paris, Ser. I, Math. 332 (2001), 215–218. DOI 10.1016/S0764-4442(00)01784-5 | MR 1817364
[2] H. Berestycki: On some nonlinear Sturm-Liouville problems. J. Differ. Equations 26 (1977), 375–390. DOI 10.1016/0022-0396(77)90086-9 | MR 0481230 | Zbl 0331.34020
[3] P. J. Brown: A Prüfer approach to half-linear Sturm-Liouville problems. Proc. Edinburgh Math. Soc. 41 (1998), 573–583. MR 1697591
[4] E. N. Dancer: On the Dirichlet problem for weakly nonlinear elliptic partial differential equations. Proc. Roy. Soc. Edinburgh, Sect. A 76 (1977), 283–300. MR 0499709
[5] J. Eisner, M. Kučera: Bifurcation of solutions to reaction-diffusion systems with jumping nonlinearities. Applied Nonlinear Analysis, A. Sequeira, H. Beirao da Veiga, J. H. Videman (eds.), Kluwer Academic/Plenum Publishers, 1999, pp. 79–96. MR 1727442
[6] J. Eisner, M. Kučera: Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions. Fields Institute Comm. 25 (2000), 239–256. MR 1759546
[7] S. Fučík: Boundary value problems with jumping nonlinearities. Čas. Pěst. Mat. 101 (1976), 69–87. MR 0447688
[8] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer, Berlin, 1983. MR 0737190
[9] M. Kučera: Bifurcation points of variational inequalities. Czechoslovak Math. J. 32 (1982), 208–226. MR 0654057
[10] M. Kučera: Reaction-diffusion systems: Stabilizing effect of conditions described by quasivariational inequalities. Czechoslovak Math. J. 47 (1997), 469–486. DOI 10.1023/A:1022411501260 | MR 1461426
[11] V. K. Le, K. Schmitt: Global Bifurcation in Variational Inequalities. Springer, New York, 1997. MR 1438548
[12] L. Nirenberg: Topics in Nonlinear Functional Analysis. Courant Institut, New York, 1974. MR 0488102 | Zbl 0286.47037
[13] P. Quittner: Spectral analysis of variational inequalities. Comment. Math. Univ. Carolin. 27 (1986), 605–629. MR 0873631
[14] P. Quittner: Solvability and multiplicity results of variational inequalities. Comment. Math. Univ. Carolin. 30 (1989), 281–302. MR 1014128
[15] P. H. Rabinowitz: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7 (1987), 487–513. MR 0301587
[16] B. P. Rynne: The Fučík spectrum of general Sturm-Liouville problems. J. Differ. Equations 161 (2000), 87–109. DOI 10.1006/jdeq.1999.3661 | MR 1740358 | Zbl 0976.34024
Partner of
EuDML logo