[1] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed:
On the periodic nature of some max-type difference equation. Int. J. Math. Math. Sci. 14 (2005), 2227–2239.
MR 2177819
[2] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed:
On the difference equation $x_{n+1}=\frac{\alpha x_{n-k}}{\Bigl (\beta +\gamma \prod _{i=0}^{k}x_{n-i}\Bigr )}$. J. Conc. Appl. Math. 5 (2007), 101–113.
MR 2292704
[3] H. El-Metwally, E. A. Grove, G. Ladas, H. D. Voulov:
On the global attractivity and the periodic character of some difference equations. J. Difference Equ. Appl. 7 (2001), 837–850.
DOI 10.1080/10236190108808306 |
MR 1870725
[4] H. El-Metwally, E. A. Grove, G. Ladas, L. C. McGrath:
On the difference equation $y_{n+1}= \frac{(y_{n-(2k+1)}+p)}{(y_{n-(2k+1)}+qy_{n-2l})}$. Proceedings of the 6th ICDE, Taylor and Francis, London, 2004.
MR 2092580
[6] G. Karakostas:
Convergence of a difference equation via the full limiting sequences method. Diff. Equ. Dyn. Sys. 1 (1993), 289–294.
MR 1259169 |
Zbl 0868.39002
[7] V. L. Kocic, G. Ladas:
Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic Publishers, Dordrecht, 1993.
MR 1247956
[8] W. A. Kosmala, M. R. S. Kulenovic, G. Ladas, C. T. Teixeira:
On the recursive sequence $y_{n+1}= \frac{p+y_{n-1}}{qy_{n}+y_{n-1}}$. J. Math. Anal. Appl. 251 (2001), 571–586.
MR 1794759
[10] M. R. S. Kulenovic, G. Ladas, N. R. Prokup:
On the recursive sequence $x_{n+1}=(\alpha x_{n}+\beta x_{n-1})/{(A+x_{n})}$. J. Difference Equ. Appl. 6 (2000), 563–576.
MR 1802447
[11] M. R. S. Kulenovic, G. Ladas, W. S. Sizer:
On the recursive sequence $x_{n+1}=(\alpha x_{n}+\beta x_{n-1})/{(\gamma x_{n}+\delta x_{n-1})}$. Math. Sci. Res. Hot-Line 2 (1998), 1–16.
MR 1623643