Previous |  Up |  Next

Article

Keywords:
stability; periodic solution; difference equation
Summary:
In this paper we investigate the global convergence result, boundedness and periodicity of solutions of the recursive sequence \[ x_{n+1}=\frac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}},\,\,\,n=0,1,\dots \,\ \] where the parameters $ a_{i}$ and $b_{i}$ for $i=0,1,\dots ,k$ are positive real numbers and the initial conditions $x_{-k},x_{-k+1},\dots ,x_{0}$ are arbitrary positive numbers.
References:
[1] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed: On the periodic nature of some max-type difference equation. Int. J. Math. Math. Sci. 14 (2005), 2227–2239. MR 2177819
[2] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed: On the difference equation $x_{n+1}=\frac{\alpha x_{n-k}}{\Bigl (\beta +\gamma \prod _{i=0}^{k}x_{n-i}\Bigr )}$. J. Conc. Appl. Math. 5 (2007), 101–113. MR 2292704
[3] H. El-Metwally, E. A. Grove, G. Ladas, H. D. Voulov: On the global attractivity and the periodic character of some difference equations. J. Difference Equ. Appl. 7 (2001), 837–850. DOI 10.1080/10236190108808306 | MR 1870725
[4] H. El-Metwally, E. A. Grove, G. Ladas, L. C. McGrath: On the difference equation $y_{n+1}= \frac{(y_{n-(2k+1)}+p)}{(y_{n-(2k+1)}+qy_{n-2l})}$. Proceedings of the 6th ICDE, Taylor and Francis, London, 2004. MR 2092580
[5] G. Karakostas: Asymptotic 2-periodic difference equations with diagonally self-invertible responses. J. Difference Equ. Appl. 6 (2000), 329–335. DOI 10.1080/10236190008808232 | MR 1785059 | Zbl 0963.39020
[6] G. Karakostas: Convergence of a difference equation via the full limiting sequences method. Diff. Equ. Dyn. Sys. 1 (1993), 289–294. MR 1259169 | Zbl 0868.39002
[7] V. L. Kocic, G. Ladas: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic Publishers, Dordrecht, 1993. MR 1247956
[8] W. A. Kosmala, M. R. S. Kulenovic, G. Ladas, C. T. Teixeira: On the recursive sequence $y_{n+1}= \frac{p+y_{n-1}}{qy_{n}+y_{n-1}}$. J. Math. Anal. Appl. 251 (2001), 571–586. MR 1794759
[9] M. R. S. Kulenovic, G. Ladas, N. R. Prokup: A rational difference equation. Comput. Math. Appl. 41 (2001), 671–678. DOI 10.1016/S0898-1221(00)00311-4 | MR 1822594
[10] M. R. S. Kulenovic, G. Ladas, N. R. Prokup: On the recursive sequence $x_{n+1}=(\alpha x_{n}+\beta x_{n-1})/{(A+x_{n})}$. J. Difference Equ. Appl. 6 (2000), 563–576. MR 1802447
[11] M. R. S. Kulenovic, G. Ladas, W. S. Sizer: On the recursive sequence $x_{n+1}=(\alpha x_{n}+\beta x_{n-1})/{(\gamma x_{n}+\delta x_{n-1})}$. Math. Sci. Res. Hot-Line 2 (1998), 1–16. MR 1623643
[12] Wan-Tong Li, Hong-Rui Sun: Dynamics of a rational difference equation. Appl. Math. Comp. 163 (2005), 577–591. DOI 10.1016/j.amc.2004.04.002 | MR 2121812
Partner of
EuDML logo