Article
Keywords:
Fréchet space; projective limit; surjective mapping
Summary:
An application of Mittag-Leffler lemma in the category of quotients of Fréchet spaces. We use Mittag-Leffler Lemma to prove that for a nonempty interval $]a,b[\subset \mathbb{R}$, the restriction mapping $H^{\infty }(]a,b[+\mathrm{i}\mathbb{R}) \rightarrow C^{\infty }\left( ]a,b[\right)$ is surjective and we give a corollary.
Related articles:
References:
[1] B. Aqzzouz, R. Nouira: L’exactitude du foncteur limite projective sur la catégorie des quotients d’espaces de Fréchet. (to appear).
[2] V. P. Palamodov:
The projective limit functor in the category of topological linear spaces. Mat. Sb. (N.S.) 75 (1968), 567–603. (Russian)
MR 0223851
[3] V. P. Palamodov:
Homological methods in the theory of locally convex spaces. Usp. Mat. Nauk 26 (1971), 3–65. (Russian)
MR 0293365 |
Zbl 0247.46070
[4] L. Waelbroeck:
Quotient Fréchet spaces. Rev. Roum. Math. Pures Appl. 34 (1989), 171–179.
MR 1005909 |
Zbl 0696.46052
[5] J. Wengenroth:
Derived Functors in Functional Analysis. Lect. Notes Math. 1810, Springer, Berlin, 2003.
MR 1977923 |
Zbl 1031.46001