Previous |  Up |  Next

Article

Keywords:
multilattice; graph automorphism; direct factor
Summary:
In the present paper we generalize a result of a theorem of J. Jakubík concerning graph automorphisms of lattices to the case of multilattices of locally finite length.
References:
[1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967. MR 0227053 | Zbl 0153.02501
[2] M. Benado: Les ensembles partiellement ordonnèes et le théorème de raffinement de Schreier, II. Théorie des multistructures. Czechoslovak Math. J. 5 (1955), 308–344. MR 0076744
[3] J. Jakubík: On isomorphisms of graphs of lattices. Czechoslovak Math. J. 35 (1985), 188–200. MR 0787124
[4] J. Jakubík: Graph automorphisms of a finite modular lattice. Czechoslovak Math. J. 49 (1999), 443–447. DOI 10.1023/A:1022425007638 | MR 1692500
[5] J. Jakubík: Graph automorphisms and cells of lattices. Czechoslovak Math. J. 53 (2003), 103–111. DOI 10.1023/A:1022927609440 | MR 1962002 | Zbl 1014.06007
[6] J. Jakubík, M. Csontóová: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359–379. MR 1251882
[7] M. Tomková: Graph isomorphisms of modular multilattices. Math. Slovaca 30 (1980), 95–100. MR 0568218
[8] M. Tomková: Graph isomorphisms of partially ordered sets. Math. Slovaca 37 (1987), 47–52. MR 0899016
[9] C. Ratatonprasert, B. A. Davey: Semimodular lattices with isomorphic graphs. Order 4 (1987), 1–13. MR 0908432
[10] J. Jakubík: Graph automorphisms of semimodular lattices. Math. Bohem. 125 (2000), 459–464. MR 1802294
[11] M. Tomková: On multilattices with isomorphic graphs. Math. Slovaca 32 (1982), 63–73. MR 0648222
[12] J. Jakubík: On graph isomorphism of modular lattices. Czechoslovak Math. J. 4 (1954), 131–141.
Partner of
EuDML logo