[1] Galdi G. P.:
An Introduction to the Navier-Stokes Initial Boundary Value Problem. Birhäuser Verlag, Topics in Mathematical Fluid Mechanics, Galdi G. P., Heywood J. G., Rannacher R. (eds.), to appear.
MR 1798753 |
Zbl 1108.35133
[3] Kozono H.:
Uniqueness and regularity of weak solutions to the Navier-Stokes equations. Lecture Notes Num. Appl. Anal vol. 16, 1998, pp. 161–208.
MR 1616331 |
Zbl 0941.35065
[5] Ladyzhenskaya O. A.:
On the unique global solvability of the Cauchy problem for the Navier-Stokes equations in the presence of the axial symmetry. Zap. Nauch. Sem. LOMI 7 (1968), 155–177. (Russian)
MR 0241833
[6] Leonardi S., Málek J., Nečas J., Pokorný M.:
On axially symmetric flows in ${\mathbb{R}}^3$. Z. Anal. Anwend. 18 (1999), 639–649.
DOI 10.4171/ZAA/903 |
MR 1718156
[8] Neustupa J., Novotný A., Penel P.: A remark to the interior regularity of a suitable weak solution to the Navier-Stokes equation. Preprint University of Toulon-Var (1999).
[9] Neustupa J., Penel P.:
Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component. Plenum Press, Nonlinear Applied Analysis, A. Sequeira, H. Beirao da Veiga, J. Videman (eds.), 1999, pp. 391–402.
MR 1727461
[10] Nirenberg L.:
On elliptic partial differential equations. Ann. Scuola Norm. 13 (1959), 115–162.
MR 0109940 |
Zbl 0088.07601
[11] Prodi G.:
Un teorema di unicità per el equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48 (1959), 173–182.
MR 0126088
[12] Serrin J.:
The initial value problem for the Navier-Stokes equations. University of Wisconsin Press, Nonlinear Problems, R. E. Langer (ed.), 1963, pp. 69–98.
MR 0150444 |
Zbl 0115.08502
[13] Sohr H., von Wahl W.:
On the singular set and the uniqueness of weak solutions of the Navier-Stokes equations. Manuscripta Math. 49 (1984), 27–59.
DOI 10.1007/BF01174870 |
MR 0762786