Previous |  Up |  Next

Article

Keywords:
$L$-topology; remoted neighbourhood; almost $N$-compactness; $\operatorname{\text{HC}}$-closed set; $\operatorname{\text{HL}}$-continuity; $L$-net; $L$-ideal; $\operatorname{\text{HC}}$-convergence theory
Summary:
In this paper we introduce and study the concepts of $\operatorname{\text{HC}}$-closed set and $\operatorname{\text{HC}}$-limit ($\operatorname{\text{HC}}$-cluster) points of $L$-nets and $L$-ideals using the notion of almost $N$-compact remoted neighbourhoods in $L$-topological spaces. Then we introduce and study the concept of $\operatorname{\text{HL}}$-continuous mappings. Several characterizations based on $\operatorname{\text{HC}}$-closed sets and the $\operatorname{\text{HC}}$-convergence theory of $L$-nets and $L$-ideals are presented for $\operatorname{\text{HL}}$-continuous mappings.
References:
[1] S. L. Chen: Theory of $L$-fuzzy $H$-sets. Fuzzy Sets and Systems 51 (1992), 89–94. MR 1187375 | Zbl 0788.54004
[2] S. L. Chen, X. G. Wang: $L$-fuzzy $N$-continuous mappings. J. Fuzzy Math. 4 (1996), 621–629. MR 1410635
[3] S. L. Chen, S. T. Chen: A new extension of fuzzy convergence. Fuzzy Sets and Systems 109 (2000), 199–204. MR 1719626
[4] S. Dang, A. Behera: Fuzzy $H$-continuous functions. J. Fuzzy Math. 3 (1995), 135–145. MR 1322865
[5] J. M. Fang: Further characterizations of $L$-fuzzy $H$-set. Fuzzy Sets and Systems 91 (1997), 355–359. DOI 10.1016/S0165-0114(96)00153-4 | MR 1481282 | Zbl 0917.54011
[6] M. Han, M. Guangwu: Almost $N$-compact sets in $L$-fuzzy topological spaces. Fuzzy Sets and Systems 91 (1997), 115–122. DOI 10.1016/S0165-0114(96)00123-6 | MR 1481275
[7] U. Höhle, S. E. Rodabaugh: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory. The Handbooks of Fuzzy Series 3, Kluwer Academic Publishers, Dordrecht, 1999. MR 1788899
[8] Y. M. Liu, M. K. Luo: Fuzzy Stone-Čech-type compactifications. Fuzzy Sets and Systems 33 (1989), 355–372. MR 1033881
[9] Y. M. Liu, M. K. Luo: Separations in lattice-valued induced spaces. Fuzzy Sets and Systems 36 (1990), 55–66. DOI 10.1016/0165-0114(90)90078-K | MR 1063271
[10] P. E. Long, T. R. Hamlett: $H$-continuous functions. Bolletino U. M. I. 11 (1975), 552–558. MR 0383336
[11] M. N. Mukherjee, S. P. Sinha: Almost compact fuzzy sets in fuzzy topological spaces. Fuzzy Sets and Systems 48 (1990), 389–396. MR 1083070
[12] G. J. Wang: A new fuzzy compactness defined by fuzzy nets. J. Math. Anal. Appl. 94 (1983), 59–67. MR 0701446 | Zbl 0512.54006
[13] G. J. Wang: Generalized topological molecular lattices. Scientia Sinica (Ser. A) 27 (1984), 785–793. MR 0795162 | Zbl 0599.54005
[14] G. J. Wang: Theory of $L$-Fuzzy Topological Spaces. Shaanxi Normal University Press, Xi’an, 1988.
[15] Z. Q. Yang: Ideal in topological molecular lattices. Acta Mathematica Sinica 29 (1986), 276–279. MR 0855716
[16] D. S. Zhao: The $N$-compactness in $L$-fuzzy topological spaces. J. Math. Anal. Appl. 128 (1987), 64–79. DOI 10.1016/0022-247X(87)90214-9 | MR 0915967 | Zbl 0639.54006
Partner of
EuDML logo