Article
Keywords:
$C(X)$-space; supra-additive; supra-multiplicative operator; realcompact space; realcompact
Summary:
M. Radulescu proved the following result: Let $X$ be a compact Hausdorff topological space and ${\pi }\: C(X)\rightarrow C(X)$ a supra-additive and supra-multiplicative operator. Then ${\pi }$ is linear and multiplicative. We generalize this result to arbitrary topological spaces.
References:
[1] C. D. Aliprantis, O. Burkinshaw:
Positive Operators. Academic Press, New York, 1985.
MR 0809372
[3] K. P. Hart, J. Nagata, J. E. Vaughan:
Encyclopedia of General Topology. Elsevier, Amsterdam, 2004.
MR 2049453
[4] M. Radulescu:
On a supra-additive and supra-multiplicative operator of $C(X)$. Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 24 (1980), 303–305.
MR 0611909 |
Zbl 0463.47034