[1] S. Banach, A. Tarski:
Sur la dΘcomposition des ensembles de points en parties respectivement congruentes. Fund. Math. 6 (1924), 244–277.
DOI 10.4064/fm-6-1-244-277
[2] K. Ciesielski:
How good is Lebesgue measure? Math. Intell. 11 (1984), 54–58.
MR 0994965
[5] B. R. Gelbaum, J. M. H. Olmstead:
Counterexamples in analysis. Holden-Day, San Francisco, 1964.
MR 0169961
[7] I. Halperin:
Non-measurable sets and the equation $f(x+y) = f(x)+f(y)$. Proc. Amer. Math. Soc. 2 (1951), 221–224.
MR 0040387 |
Zbl 0043.11002
[15] D. Pincus:
The strength of Hahn-Banach’s Theorem. Victoria Symposium on Non-Standard Analysis vol. 369, Lecture Notes in Math. Springer, 1974, pp. 203–248.
MR 0476512
[17] J. Raissonier:
A mathematical proof of S. Shelah’s theorem on the measure problem and related results. Israel J. Math. 48 (1984), 48–56.
DOI 10.1007/BF02760523 |
MR 0768265
[18] W. Sierpiński:
Sur la question de la mesurabilité de la base de M. Hamel. Fund. Math. 1 (1920), 105–111.
DOI 10.4064/fm-1-1-105-111
[19] W. Sierpiński:
Sur un problème concernant les ensembles mesurables superficiellement. Fund. Math. 1 (1920), 112–115.
DOI 10.4064/fm-1-1-112-115
[20] W. Sierpiński:
Fonctions additives non complétement additives et fonctions mesurables. Fund. Math. 30 (1938), 96–99.
DOI 10.4064/fm-30-1-96-99
[25] G. Vitali: Sul problema della misura dei gruppi di punti di una retta. Bologna, 1905.
[26] S. Wagon:
The Banach-Tarski paradox. Cambridge University Press, Cambridge, 1986.
MR 0803509