Previous |  Up |  Next

Article

Title: Localization of nonsmooth lower and upper functions for periodic boundary value problems (English)
Author: Rachůnková, Irena
Author: Tvrdý, Milan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 4
Year: 2002
Pages: 531-545
Summary lang: English
.
Category: math
.
Summary: In this paper we present conditions ensuring the existence and localization of lower and upper functions of the periodic boundary value problem $u^{\prime \prime }+k\,u=f(t,u)$, $ u(0)=u(2\,\pi )$, $u^{\prime }(0)=u^{\prime }(2\pi )$, $k\in \mathbb{R}\hspace{0.56905pt}$, $k\ne 0.$ These functions are constructed as solutions of some related generalized linear problems and can be nonsmooth in general. (English)
Keyword: second order nonlinear ordinary differential equation
Keyword: periodic problem
Keyword: lower and upper functions
Keyword: generalized linear differential equation
MSC: 34B15
MSC: 34C25
idZBL: Zbl 1017.34013
idMR: MR1942639
DOI: 10.21136/MB.2002.133955
.
Date available: 2009-09-24T22:04:47Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133955
.
Reference: [1] C. De Coster, P. Habets: Lower and upper solutions in the theory of ODE boundary value problems: Classical and recent results.F. Zanolin (ed.) Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations. CISM Courses Lect. 371, Springer, Wien, 1996, pp. 1–78.
Reference: [2] R. E. Gaines, J. Mawhin: Coincidence Degree and Nonlinear Differential Equations.Lect. Notes Math. 568, Springer, Berlin, 1977. MR 0637067
Reference: [3] P. Habets, L. Sanchez: Periodic solutions of some Liénard equations with singularities.Proc. Amer. Math. Soc. 109 (1990), 1035–1044. MR 1009991
Reference: [4] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter.Czechoslovak Math. J. 7 (1957), 418–449. Zbl 0090.30002, MR 0111875
Reference: [5] J. Mawhin: Topological degree methods in nonlinear boundary value problems.Regional Conf. Ser. Math. 40, AMS, Rhode Island, 1979. Zbl 0414.34025, MR 0525202
Reference: [6] J. Mawhin: Topological degree and boundary value problems for nonlinear differential equations.M. Furi (ed.) Topological Methods for Ordinary Differential Equations. Lect. Notes Math. 1537, Springer, Berlin, 1993, pp. 73–142. Zbl 0798.34025, MR 1226930
Reference: [7] J. Mawhin, M. Willem: Critical Point Theory and Hamiltonian Systems.Applied Mathematical Sciences 74, Springer, Berlin, 1989. MR 0982267
Reference: [8] P. Omari: Nonordered lower and upper solutions and solvability of the periodic problem for the Liénard and the Reyleigh equations.Rend. Ist. Mat. Univ. Trieste 20 (1988), (Fasc. supplementare), 54–64. MR 1113247
Reference: [9] P. Omari, W. Ye: Necessary and sufficient conditions for the existence of periodic solutions of second order ordinary differential equations with singular nonlinearities.Differential Integral Equations 8 (1995), 1843–1858. Zbl 0831.34048, MR 1347985
Reference: [10] I. Rachůnková: Lower and upper solutions and topological degree.J. Math. Anal. Appl. 234 (1999), 311–327. 10.1006/jmaa.1999.6375
Reference: [11] I. Rachůnková: Existence of two positive solutions of a singular nonlinear periodic boundary value problems.J. Comput. Appl. Math. 113 (2000), 27–34. 10.1016/S0377-0427(99)00241-1
Reference: [12] I. Rachůnková, M. Tvrdý: Nonlinear systems of differential inequalities and solvability of certain nonlinear second order boundary value problems.J. Inequal. Appl. 6 (2001), 199–226. MR 1835526
Reference: [13] I. Rachůnková, M. Tvrdý: Method of lower and upper functions and the existence of solutions to singular periodic problems for second order nonlinear differential equations.Mathematical Notes, Miskolc 1 (2000), 135–143.
Reference: [14] I. Rachůnková, M. Tvrdý: Construction of lower and upper functions and their application to regular and singular boundary value problems.Nonlinear Analysis, Theory, Methods Appl. 47 (2001), 3937–3948. MR 1972337
Reference: [15] I. Rachůnková, M. Tvrdý, I. Vrkoč: Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems.J. Differential Equations 176 (2001), 445–469. MR 1866282, 10.1006/jdeq.2000.3995
Reference: [16] I. Rachůnková, M. Tvrdý, I. Vrkoč: Resonance and multiplicity in singular periodic boundary value problems.(to appear).
Reference: [17] Š. Schwabik, M. Tvrdý, O. Vejvoda: Differential and Integral Equations: Boundary Value Problems and Adjoints.Academia and D. Reidel, Praha and Dordrecht, 1979. MR 0542283
Reference: [18] Š. Schwabik: Generalized Ordinary Differential Equations.World Scientific, Singapore, 1992. Zbl 0781.34003, MR 1200241
Reference: [19] M. Tvrdý: Generalized differential equations in the space of regulated functions (Boundary value problems and controllability).Math. Bohem. 116 (1991), 225–244. Zbl 0744.34021, MR 1126445
Reference: [20] M. Zhang: A relationship between the periodic and the Dirichlet BVP’s of singular differential equations.Proc. Royal Soc. Edinburgh 128A (1998), 1099–1114. MR 1642144
.

Files

Files Size Format View
MathBohem_127-2002-4_4.pdf 365.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo