Previous |  Up |  Next

Article

Keywords:
initial value problems; convex multivalued map; mild solution; evolution inclusion; nonlocal condition; fixed point
Summary:
In this paper we investigate the existence of mild solutions to second order initial value problems for a class of delay integrodifferential inclusions with nonlocal conditions. We rely on a fixed point theorem for condensing maps due to Martelli.
References:
[1] K. Balachandran, M. Chandrasekaran: Existence of solutions of a delay differential equation with nonlocal condition. Indian J. Pure Appl. Math. 27 (1996), 443–449. MR 1387239
[2] J. Banas, K. Goebel: Measures of Noncompactness in Banach Spaces. Marcel Dekker, New York, 1980. MR 0591679
[3] M. Benchohra, S. K. Ntouyas: Existence of mild solutions for certain delay semilinear evolution inclusions with nonlocal conditions. Dynam. Systems Appl. 9 (2000), 405–412. MR 1844640
[4] L. Byszewski: Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem. Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. (1993), 109–112. MR 1274697
[5] L. Byszewski: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), 494–505. DOI 10.1016/0022-247X(91)90164-U | MR 1137634 | Zbl 0748.34040
[6] K. Deimling: Multivalued Differential Equations. Walter de Gruyter, Berlin, 1992. MR 1189795 | Zbl 0820.34009
[7] H. O. Fattorini: Ordinary differential equations in linear topological spaces, I. J. Differ. Equations 5 (1968), 72–105. MR 0277860
[8] H. O. Fattorini: Ordinary differential equations in linear topological spaces, II. J. Differ. Equations 6 (1969), 50–70. DOI 10.1016/0022-0396(69)90117-X | MR 0277861
[9] J. A. Goldstein: Semigroups of Linear Operators and Applications. Oxford Univ. Press, New York, 1985. MR 0790497 | Zbl 0592.47034
[10] S. Heikkila, V. Lakshmikantham: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations. Marcel Dekker, New York, 1994. MR 1280028
[11] Sh. Hu, N. Papageorgiou: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht, 1997. MR 1485775
[12] A. Lasota, Z. Opial: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. MR 0196178
[13] M. Martelli: A Rothe’s type theorem for non-compact acyclic-valued map. Boll. Un. Mat. Ital. 4 (1975), 70–76. MR 0394752
[14] S. K. Ntouyas, P. Ch. Tsamatos: Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal. Appl. 210 (1997), 679–687. DOI 10.1006/jmaa.1997.5425 | MR 1453198
[15] S. K. Ntouyas, P. Ch. Tsamatos: Global existence for second order semilinear ordinary and delay integrodifferential equations with nonlocal conditions. Appl. Anal. 67 (1997), 245–257. DOI 10.1080/00036819708840609 | MR 1614061
[16] S. K. Ntouyas: Global existence results for certain second order delay integrodifferential equations with nonlocal conditions. Dynam. Systems. Appl. 7 (1998), 415–426. MR 1639604 | Zbl 0914.35148
[17] C. C. Travis, G. F. Webb: Second order differential equations in Banach spaces. Proc. Int. Symp. on Nonlinear Equations in Abstract Spaces, Academic Press, New York, 1978, pp. 331–361. MR 0502551
[18] C. C. Travis, G. F. Webb: Cosine families and abstract nonlinear second order differential equations. Acta Math. Hung. 32 (1978), 75–96. DOI 10.1007/BF01902205 | MR 0499581
[19] K. Yosida: Functional Analysis, 6th edn. Springer, Berlin, 1980. MR 0617913
Partner of
EuDML logo