Previous |  Up |  Next

Article

Title: New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations (English)
Author: Hakl, R.
Author: Lomtatidze, A.
Author: Půža, B.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 4
Year: 2002
Pages: 509-524
Summary lang: English
.
Category: math
.
Summary: The nonimprovable sufficient conditions for the unique solvability of the problem \[ u^{\prime }(t)=\ell (u)(t)+q(t),\qquad u(a)=c, \] where $\ell \: C(I;\mathbb{R})\rightarrow L(I;\mathbb{R})$ is a linear bounded operator, $q\in L(I;\mathbb{R})$, $c\in \mathbb{R}$, are established which are different from the previous results. More precisely, they are interesting especially in the case where the operator $\ell $ is not of Volterra’s type with respect to the point $a$. (English)
Keyword: linear functional differential equations
Keyword: differential equations with deviating arguments
Keyword: initial value problems
MSC: 34K05
MSC: 34K06
MSC: 34K10
MSC: 65L05
idZBL: Zbl 1017.34065
idMR: MR1942637
DOI: 10.21136/MB.2002.133950
.
Date available: 2009-09-24T22:04:31Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133950
.
Reference: [1] Azbelev, N. V.; Maksimov, V. P.; Rakhmatullina, L. F.: Introduction to the Theory of Functional Differential Equations.Nauka, Moskva, 1991. (Russian) MR 1144998
Reference: [2] Bravyi, E.; Hakl, R.; Lomtatidze, A.: Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations.Czechoslovak Math. J (to appear). MR 1923257
Reference: [3] Bravyi, E.: A note on the Fredholm property of boundary value problems for linear functional differential equations.Mem. Differential Equations Math. Phys. 20 (2000), 133–135. Zbl 0968.34049, MR 1789344
Reference: [4] Gelashvili, Sh.; Kiguradze, I.: On multi-point boundary value problems for systems of functional differential and difference equations.Mem. Differential Equations Math. Phys. 5 (1995), 1–113. MR 1415806
Reference: [5] Kiguradze, I.; Půža, B.: On boundary value problems for systems of linear functional differential equations.Czechoslovak Math. J. 47 (1997), 341–373. MR 1452425, 10.1023/A:1022829931363
Reference: [6] Schwabik, Š.; Tvrdý, M.; Vejvoda, O.: Differential and Integral Equations: Boundary Value Problems and Adjoints.Academia, Praha, 1979. MR 0542283
.

Files

Files Size Format View
MathBohem_127-2002-4_2.pdf 340.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo