Previous |  Up |  Next

Article

Keywords:
convergence $\ell $-group; disjoint subset; direct product; lexico extension; sequential convergence
Summary:
In this paper we deal with the relation \[ \lim _\alpha \lim _\alpha X=\lim _\alpha X \] for a subset $X$ of $G$, where $G$ is an $\ell $-group and $\alpha $ is a sequential convergence on $G$.
References:
[1] P. Conrad: The structure of a lattice ordered group with a finite number of disjoint elements. Michigan Math. J. 7 (1960), 171–180. DOI 10.1307/mmj/1028998387 | MR 0116059 | Zbl 0103.01501
[2] P. Conrad: Lattice Ordered Groups. Lecture Notes, Tulane University, 1970. Zbl 0258.06011
[3] J. Jakubík: Direct decompositions of partially ordered groups, II. Czechoslovak Math. J. 11 (1961), 490–515. (Russian) MR 0137776
[4] J. Jakubík: Sequential convergences in $\ell $-groups without Urysohn’s axiom. Czechoslovak Math. J. 42 (1992), 101–116. MR 1152174
[5] J. Jakubík: Closed convex $\ell $-subgroups and radical classes of convergence $\ell $-groups. Math. Bohem. 122 (1997), 301–315. MR 1600660
[6] V. M. Kopytov, N. Ya. Medvedev: The Theory of Lattice Ordered Groups. Kluwer Academic Publishers, Dordrecht-Boston-London, 1994. MR 1369091
Partner of
EuDML logo