Previous |  Up |  Next

Article

Keywords:
lattice ordered group; weak $\sigma $-distributivity; radical class
Summary:
In this paper we prove that the collection of all weakly distributive lattice ordered groups is a radical class and that it fails to be a torsion class.
References:
[1] P. Conrad: $K$-radical classes of lattice ordered groups. Algebra, Proc. Conf. Carbondale 1980, Lecture Notes Math vol. 848, 1981, pp. 186–207. MR 0613186 | Zbl 0455.06010
[2] A. Boccuto: Integration in Riesz spaces with respect to $(D)$-convergence. Tatra Mountains Math. Publ. 10 (1997), 33–54. MR 1469280 | Zbl 0918.28010
[3] M. Darnel: Closure operations on radicals of lattice ordered groups. Czechoslovak Math. J. 37 (1987), 51–64. MR 0875127
[4] D. Gluschankof: Cyclic ordered groups and $MV$-algebras. Czechoslovak Math. J. 43 (1993), 249–263. MR 1211747 | Zbl 0795.06015
[5] J. Jakubík: Radical mappings and radical classes of lattice ordered groups. Symposia Math vol. 21, Academic Press, New York-London, 1977, pp. 451–477. MR 0491397
[6] J. Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math. J. 44 (1994), 725–739.
[7] J. Jakubík: Radical classes of $MV$-algebras. Czechoslovak Math. J. 49 (1999), 191–211. DOI 10.1023/A:1022428713092 | MR 1676805
[8] J. Martinez: Torsion theory for lattice-ordered groups. Czechoslovak Math. J. 25 (1975), 284–299. MR 0389705 | Zbl 0321.06020
[9] D. Mundici: Interpretation of $AFC^*$-algebras in Łukasziewicz sentential calculus. J. Functional Anal. 65 (1986), 15–53. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173
[10] B. Riečan, T. Neubrunn: Integral, Measure and Ordering. Kluwer Publ., Dordrecht, 1997. MR 1489521
[11] Dao-Rong Ton: Product radical classes of $\ell $-groups. Czechoslovak Math. J. 43 (1992), 129–142. MR 1152176
Partner of
EuDML logo