[2] M. Artola, M. Cessenat:
Diffraction d’une onde électromagnetique par un obstacle borné à permittivité et perméabilité élevées. C. R. Acad. Sci. Paris, Sér. I Math. 314 (1992), 349–354.
MR 1153713
[3] A. Bensoussan, J. L. Lions and G. Papanicolaou:
Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications. North-Holland Publishing Company, Amsterdam-New York-Oxford, 1978.
MR 0503330
[4] B. Birnir, N. Wellander: Homogenized Maxwell’s equations; a model for ceramic varistors. Submitted.
[5] E. Coddington, N. Levinson:
Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955.
MR 0069338
[6] G. Duvaut, J. L. Lions:
Inequalities in Mechanics and Physics. Springer Verlag, Berlin-Heidelberg-New York, 1976.
MR 0521262
[7] L. C. Evans, R. F. Gariepy:
Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, 1992.
MR 1158660
[8] A. Holmbom: The concept of parabolic two-scale convergence, a new compactness result and its application to homogenization of evolution partial differential equations. Research report 1994-18, Mid-Sweden University Östersund.
[9] A. Holmbom: Some modes of convergence and their application to homogenization and optimal composites design. Ph.D. thesis, Luleå University of Technology, 1996.
[10] P. A. Markowich, F. Poupaud:
The Maxwell equation in a periodic medium: Homogenization of the energy density. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 (1996), 301–324.
MR 1433425
[11] C.-W. Nan, D. R. Clarke:
Effect of variations in grain size and grain boundary barrier heights on the current-voltage characteristics of ZnO varistors. J. Am. Ceram. Soc. 79 (1996), 3185–3192.
DOI 10.1111/j.1151-2916.1996.tb08094.x
[12] A. Negro:
Some problems of homogenization in quasistationary Maxwell equations. In: Applications of Multiple Scaling in Mechanics, Proc. Int. Conf., Ecole Normale Superieure, Paris 1986, Rech. Math. Appl. 4, Masson, Paris, 1987, pp. 246–258.
MR 0901998 |
Zbl 0644.73077
[14] E. Sanchez-Palencia:
Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127. Springer-Verlag, Berlin-Heidelberg-New-York, 1980.
MR 0578345
[15] A. Vojta, Q. Wen and D. R. Clarke:
Influence of microstructural disorder on the current transport behavior of varistor ceramics. Comput. Mater. Sci. 6 (1996), 51–62.
DOI 10.1016/0927-0256(96)00011-0
[16] A. Vojta, D. R. Clarke: Microstructural origin of current localization and “puncture” failure in varistor ceramics. J. Appl. Phys. 81 (1997), 1–9.
[18] N. Wellander: Homogenization of some linear and nonlinear partial differential equations. Ph.D. thesis, Luleå University of Technology, 1998.
[19] E. Zeidler: Nonlinear Functional Analysis and its Applications, Volumes IIA and IIB. Springer-Verlag, Berlin, 1990.
[20] V. V. Zhikov, S. M. Kozlov and O. A. Oleinik:
Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Leyden, 1994.
MR 1329546