[A1] Andres J.:
Existence of two almost periodic solutions of pendulum-type equations. Nonlin. Anal. 37 (1999), 797–804.
MR 1692807 |
Zbl 1014.34032
[A2] Andres J.:
Almost-periodic and bounded solutions of Carathéodory differential inclusions. Differential Integral Eqns 12, (1999), 887–912.
MR 1728035 |
Zbl 1017.34011
[A3] Andres J.:
Bounded, almost-periodic and periodic solutions of quasi-linear differential inclusions. Lecture Notes in Nonlinear Anal. 2, (J. Andres, L. Górniewicz and P. Nistri, eds.), N. Copernicus Univ., Toruń, 1998, 35–50.
Zbl 1096.34508
[AB] Andres J., Bersani A. M.:
Almost-periodicity problem as a fixed-point problem for evolution inclusions. Topol. Meth. Nonlin. Anal. 18 (2001), 337–350.
MR 1911386 |
Zbl 1013.34063
[ABG] Andres J., Bersani A. M., Grande R. F.:
Hierarchy of almost-periodic function spaces. Rendiconti Mat. Appl. Ser. VII, 26, 2 (2006), 121–188.
MR 2275292 |
Zbl 1133.42002
[ABL] Andres J., Bersani A. M., Leśniak K.:
On some almost-periodicity problems in various metrics. Acta Appl. Math. 65, 1-3 (2001), 35–57.
MR 1843785 |
Zbl 0997.34032
[AG] Andres J., Górniewicz L.: Topological Fixed Point Principles for Boundary Value Problems. :
Kluwer, Dordrecht. 2003.
MR 1998968
[AK] Andres J., Krajc B.:
Unified approach to bounded, periodic and almost periodic solutions of differential systems. Ann. Math. Sil. 11 (1997), 39–53.
MR 1604867 |
Zbl 0899.34029
[BFSD1] Belley J. M., Fournier G., Saadi Drissi K.:
Almost periodic weak solutions to forced pendulum type equations without friction. Aequationes Math. 44 (1992), 100–108.
MR 1165787 |
Zbl 0763.34035
[BFSD2] Belley J. M., Fournier G., Saadi Drissi K.:
Solutions faibles presque périodiques d’équation différentialle du type du pendule forcé. Acad. Roy. Belg. Bull. Cl. Sci. 6, 3 (1992), 173–186.
MR 1266017
[BFSD3] Belley J. M., Fournier G., Saadi Drissi K.: Solutions presque périodiques du systéme différential du type du pendule forcé. Acad. Roy. Belg. Bull. Cl. Sci. 6, 3 (1992), 265–278.
[BFH] Belley J. M., Fournier G., Hayes J.:
Existence of almost periodic weak type solutions for the conservative forced perdulum equation. J. Diff. Eqns 124, (1996), 205–224.
MR 1368066
[D1] Danilov L. I.: Almost periodic solutions of multivalued maps. Izv. Otdela Mat. Inform. Udmurtsk. Gos. Univ. 1 (1993), Izhevsk, 16–78 (in Russian).
[D2] Danilov L. I.:
Measure-valued almost periodic functions and almost periodic selections of multivalued maps. Mat. Sb. 188 (1997), 3–24 (in Russian); Sbornik: Mathematics 188 (1997), 1417–1438.
MR 1485446 |
Zbl 0889.42009
[D3] Danilov L. I.:
On Weyl almost periodic solutions of multivalued maps. J. Math. Anal. Appl. 316, 1 (2006), 110–127.
MR 2201752
[DHS] Deimling K., Hetzer G., Wenxian Shen:
Almost periodicity enforced by Coulomb friction. Advances Diff. Eqns 1, 2 (1996), 265–281.
MR 1364004
[DM] Dzurnak A., Mingarelli A. B.:
Sturm-Liouville equations with Besicovitch almost periodicity. Proceed. Amer. Math. Soc. 106, 3 (1989), 647–653.
MR 0938910
[DS] Dolbilov A. M., Shneiberg I. Ya.:
Almost periodic multifunctions and their selections. Sibirsk. Mat. Zh. 32 (1991), 172–175 (in Russian).
MR 1138453
[H] Haraux A.:
Asymptotic behavior for two-dimensional, quasi-autonomous, almost-periodic evolution equations. J. Diff. Eqns 66 (1987), 62–70.
MR 0871571 |
Zbl 0625.34051
[HP] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume I: Theory. :
Kluwer, Dordrecht. 1997.
MR 1485775
[Kh] Kharasakhal V. Kh.: Almost-Periodic Solutions of Ordinary Differential Equations. :
Nauka, Alma-Ata. 1970 (in Russian).
MR 0293176
[KBK] Krasnosel’skii M. A., Burd V. Sh., Kolesov, Yu. S.: Nonlinear Almost Periodic Oscillations. :
Nauka, Moscow. 1970 (in Russian); English translation: J. Wiley, New York, 1971.
MR 0298131
[Ku] Kunze M.: Non-Smooth Dynamical Systems. :
Lect. Notes Math., Vol. 1744, Springer, Berlin. 2000.
MR 1789550
[L] Levitan B. M.: Almost Periodic Functions. :
GITTL, Moscow. 1953 (in Russian).
MR 0060629
[LZ] Levitan B. M., Zhikov V. V.: Almost Periodic Functions, Differential Equations. :
Cambridge Univ. Press, Cambridge. 1982.
MR 0690064
[P] Pankov A. A.: Bounded, Almost Periodic Solutions of Nonlinear Operator Differential Equations. :
Kluwer, Dordrecht. 1990.
MR 1120781
[R] Radová L.:
Theorems of Bohr–Neugebauer-type for almost-periodic differential equations. Math. Slovaca 54 (2004), 191–207.
MR 2074215 |
Zbl 1068.34042
[ZL] Zhikov V. V., Levitan B. M.:
The Favard theory. Uspekhi Matem. Nauk. 32 (1977), 123–171 (in Russian); Russian Math. Surv. 32 (1977), 129–180.
MR 0470405