Article
Keywords:
$MV$-algebra; $l$-group.
Summary:
In the paper an additive closure operator on an abelian unital $l$-group $(G,u)$ is introduced and one studies the mutual relation of such operators and of additive closure ones on the $MV$-algebra $\Gamma (G,u)$.
References:
[1] Chang C. C.:
Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490.
MR 0094302 |
Zbl 0084.00704
[2] Chang C. C.:
A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80.
MR 0122718 |
Zbl 0093.01104
[3] Cignoli R. O. L., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many-valued Reasoning. :
Kluwer Acad. Publ., Dordrecht–Boston–London. 2000.
MR 1786097
[4] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. :
Kluwer Acad. Publ., Dordrecht. 2000.
MR 1861369
[5] Mundici D.:
Interpretation of AF $C^{*}\! $-algebras in Lukasiewicz sentential calculus. J. Funct. Analys. 65 (1986), 15–63.
MR 0819173 |
Zbl 0597.46059
[6] Rachůnek J., Švrček F.:
MV-algebras with additive closure operators. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 39 (2000), 183–189.
MR 1826361 |
Zbl 1039.06005