Previous |  Up |  Next

Article

Keywords:
domain; complete semilattice; Scott-closed set; C-continuous lattice; C-algebraic lattice
Summary:
A dcpo $P$ is continuous if and only if the lattice $C(P)$ of all Scott-closed subsets of $P$ is completely distributive. However, in the case where $P$ is a non-continuous dcpo, little is known about the order structure of $C(P)$. In this paper, we study the order-theoretic properties of $C(P)$ for general dcpo's $P$. The main results are: (i) every $C(P)$ is C-continuous; (ii) a complete lattice $L$ is isomorphic to $C(P)$ for a complete semilattice $P$ if and only if $L$ is weak-stably C-algebraic; (iii) for any two complete semilattices $P$ and $Q$, $P$ and $Q$ are isomorphic if and only if $C(P)$ and $C(Q)$ are isomorphic. In addition, we extend the function $P\mapsto C(P)$ to a left adjoint functor from the category {\bf DCPO} of dcpo's to the category {\bf CPAlg} of C-prealgebraic lattices.
References:
[1] Abramsky S.: Domain Theory and the Logic of Observable Properties. PhD. Thesis, University of London, 1987. MR 1365749
[2] Abramsky S., Jung A.: Domain Theory. in Handbook of Logic in Computer Science, vol. 3, S. Abramsky, D.M. Gabbay, T.S.E. Maibaum, Eds., Clarendon Press, New York, 1994, pp. 1--168. MR 1365749
[3] Banaschewski B.: On the topologies of injective spaces. Continuous Lattices and their Applications (Bremen, 1982), Lecture Notes in Pure and Appl. Math., 101, Dekker, New York, 1985, pp. 1--8. MR 0825992 | Zbl 0614.54033
[4] Davey B.A., Priestley H.A.: Introduction to Lattices and Order. second edition, Cambridge Text Books, Cambridge University Press, Cambridge, 1994. MR 1902334 | Zbl 1002.06001
[5] Escardó M.H.: Injective locales over perfect embeddings and algebras of the upper powerlocale monad. Appl. Gen. Topol. 4 (2003), no. 1, 193--200. MR 2021762
[6] Gierz G., Hoffmann K.H., Keimel K., Lawson J.D., Mislove M.W., Scott D.S.: A Compendium of Continuous Lattices. Springer, Berlin, 1980. MR 0614752
[7] Gierz G., Hoffmann K.H., Keimel K., Lawson J.D., Mislove M.W., Scott D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge, 2003. MR 1975381
[8] Heckmann R.: Lower and upper power domain constructions commute on all cpos. Inform. Process. Lett. 40 (1991), no. 1, 7--11. DOI 10.1016/S0020-0190(05)80003-1 | MR 1134002 | Zbl 0748.68038
[9] W.K. Ho: Theory of Frames. Master Thesis, Nanyang Technological University, 2002. Zbl 1162.06003
[10] Hoffmann R.E.: Continuous posets, prime spectra of completely distributive lattices, and Hausdorff compactification. in Continuous Lattices, Lecture Notes in Mathematics, 871, Springer, Berlin-Heidelberg, 1981, pp. 159--208. DOI 10.1007/BFb0089907
[11] Isbell J.R.: Completion of a construction of Johnstone. Proc. Amer. Math. Soc. 85 (1982), 333--334. DOI 10.1090/S0002-9939-1982-0656096-4 | MR 0656096 | Zbl 0492.06006
[12] Johnstone P.T.: Scott is not always sober. in Continuous Lattices, Lecture Notes in Mathematics, 871, Springer, Berlin-Heidelberg, 1981, pp. 282--283. DOI 10.1007/BFb0089911 | Zbl 0469.06002
[13] Johnstone P.T.: Stone Spaces. Cambridge Studies in Advanced Mathematics, 3, Cambridge University Press, Cambridge, 1982. MR 0698074 | Zbl 0586.54001
[14] Kock A.: Monads for which structures are adjoint to units. J. Pure Appl. Algebra 104 (1995), no. 1, 41--59. DOI 10.1016/0022-4049(94)00111-U | MR 1359690 | Zbl 0849.18008
[15] Lawson J.: The duality of continuous posets. Houston J. Math. 5 (1979), 357--394. MR 0559976 | Zbl 0428.06003
[16] Mac Lane S.: Categories for the Working Mathematician. Springer, New York-Berlin, 1971. Zbl 0906.18001
[17] Mislove M.W.: Local DCPOs, local CPOs and local completions. Electron. Notes Theor. Comput. Sci., 20, Elsevier, Amsterdam, 1999, pp. 287--300. DOI 10.1016/S1571-0661(04)80085-9 | MR 1719008 | Zbl 0924.68112
[18] Papert S.: Which distributive lattices are lattices of closed sets?. Proc. Cambridge Philos. Soc. 55 (1959), 172--176. MR 0104601 | Zbl 0178.33703
[19] Raney G.N.: Completely distributive complete lattices. Proc. Amer. Math. Soc. 3 (1952), 667--680. DOI 10.1090/S0002-9939-1952-0052392-3 | MR 0052392 | Zbl 0053.35201
[20] Scott D.: Data types as lattices. SIAM J. Comput. 5 (1976), no. 3, 522--587. DOI 10.1137/0205037 | MR 0437330 | Zbl 0337.02018
[21] Schalk A.: Algebras for generalised power constructions. PhD. Thesis, Technische Hochschule Darmstadt, 1993.
[22] Smyth M.B.: Topology. in Handbook of Logic in Computer Science, vol. 1, Oxford University Press, New York, 1992. MR 1426367 | Zbl 1039.68504
[23] Venugopalan G.: Union-complete subset systems. Houston J. Math. 14 (1988), 583--600. MR 0998459 | Zbl 0689.06005
[24] Vickers S.J.: Topology via Logic. Cambridge University Press, Cambridge, 1989. MR 1002193 | Zbl 0922.54002
[25] Zhao D.: N-compactness in L-fuzzy topological spaces. J. Math. Anal. Appl. 128 (1987), 64--79. DOI 10.1016/0022-247X(87)90214-9 | MR 0915967 | Zbl 0639.54006
[26] Zhao D.: On projective Z-frames. Canad. Math. Bull. 40 (1997), no. 1, 39--46. DOI 10.4153/CMB-1997-004-4 | MR 1443723 | Zbl 0871.06007
Partner of
EuDML logo