[1] Abramsky S.:
Domain Theory and the Logic of Observable Properties. PhD. Thesis, University of London, 1987.
MR 1365749
[2] Abramsky S., Jung A.:
Domain Theory. in Handbook of Logic in Computer Science, vol. 3, S. Abramsky, D.M. Gabbay, T.S.E. Maibaum, Eds., Clarendon Press, New York, 1994, pp. 1--168.
MR 1365749
[3] Banaschewski B.:
On the topologies of injective spaces. Continuous Lattices and their Applications (Bremen, 1982), Lecture Notes in Pure and Appl. Math., 101, Dekker, New York, 1985, pp. 1--8.
MR 0825992 |
Zbl 0614.54033
[4] Davey B.A., Priestley H.A.:
Introduction to Lattices and Order. second edition, Cambridge Text Books, Cambridge University Press, Cambridge, 1994.
MR 1902334 |
Zbl 1002.06001
[5] Escardó M.H.:
Injective locales over perfect embeddings and algebras of the upper powerlocale monad. Appl. Gen. Topol. 4 (2003), no. 1, 193--200.
MR 2021762
[6] Gierz G., Hoffmann K.H., Keimel K., Lawson J.D., Mislove M.W., Scott D.S.:
A Compendium of Continuous Lattices. Springer, Berlin, 1980.
MR 0614752
[7] Gierz G., Hoffmann K.H., Keimel K., Lawson J.D., Mislove M.W., Scott D.S.:
Continuous Lattices and Domains. Cambridge University Press, Cambridge, 2003.
MR 1975381
[9] W.K. Ho:
Theory of Frames. Master Thesis, Nanyang Technological University, 2002.
Zbl 1162.06003
[10] Hoffmann R.E.:
Continuous posets, prime spectra of completely distributive lattices, and Hausdorff compactification. in Continuous Lattices, Lecture Notes in Mathematics, 871, Springer, Berlin-Heidelberg, 1981, pp. 159--208.
DOI 10.1007/BFb0089907
[12] Johnstone P.T.:
Scott is not always sober. in Continuous Lattices, Lecture Notes in Mathematics, 871, Springer, Berlin-Heidelberg, 1981, pp. 282--283.
DOI 10.1007/BFb0089911 |
Zbl 0469.06002
[13] Johnstone P.T.:
Stone Spaces. Cambridge Studies in Advanced Mathematics, 3, Cambridge University Press, Cambridge, 1982.
MR 0698074 |
Zbl 0586.54001
[16] Mac Lane S.:
Categories for the Working Mathematician. Springer, New York-Berlin, 1971.
Zbl 0906.18001
[18] Papert S.:
Which distributive lattices are lattices of closed sets?. Proc. Cambridge Philos. Soc. 55 (1959), 172--176.
MR 0104601 |
Zbl 0178.33703
[21] Schalk A.: Algebras for generalised power constructions. PhD. Thesis, Technische Hochschule Darmstadt, 1993.
[22] Smyth M.B.:
Topology. in Handbook of Logic in Computer Science, vol. 1, Oxford University Press, New York, 1992.
MR 1426367 |
Zbl 1039.68504