Previous |  Up |  Next

Article

Keywords:
Abelian group; torsionfree; finite rank; Butler group; $B(1)$-group; $B(2)$-group; type; tent; base change; direct decomposition; typeset
Summary:
A $B(2)$-group is a sum of a finite number of torsionfree Abelian groups of rank $1$, subject to two independent linear relations. We complete here the study of direct decompositions over two base elements, determining the cases where the relations play an essential role.
References:
[F II] Fuchs L.: Infinite Abelian Groups. Vol.II, Academic Press, London-New York, 1973. MR 0349869 | Zbl 0338.20063
[A] Arnold D.M.: Abelian Groups and Representations of Finite Partially Ordered Sets. CMS books in Mathematics, 2, Springer, New York, 2000. MR 1764257 | Zbl 0959.16011
[AV] Arnold D.M., Vinsonhaler C.: Finite rank Butler groups: A survey of recent results. Abelian Groups (Curacao, 1991), Lecture Notes in Pure and Applied Math., 146, Marcel Dekker, 1993, pp. 17--41. MR 1217256 | Zbl 0804.20043
[VWW] Vinsonhaler C., Wallutis S.L., Wickless W.J.: A class of $B(2)$-groups. Comm. Algebra 33 (2005), no. 6, 2025--2037. DOI 10.1081/AGB-200063348 | MR 2150857 | Zbl 1077.20062
[DVM 4] De Vivo C., Metelli C.: Decomposing $B(1)$-groups: an algorithm. Comm. Algebra 30 (2002), no. 12, 5621--5637. DOI 10.1081/AGB-120015998 | MR 1941915 | Zbl 1019.20021
[DVM 8] De Vivo C., Metelli C.: On degenerate $B(2)$-groups. Houston J. Math. 32 (2006), no. 3, 633--649. MR 2247900
[DVM 10] De Vivo C., Metelli C.: Butler groups splitting over a base element. Colloq. Math. 109 (2007), no. 2, 297--305. DOI 10.4064/cm109-2-11 | MR 2318525 | Zbl 1123.20044
[DVM 11] De Vivo C., Metelli C.: Settings for a study of finite rank Butler groups. J. Algebra 318 (2007), no. 1, 456--483. DOI 10.1016/j.jalgebra.2007.07.024 | MR 2363144 | Zbl 1141.20032
[DVM 12] De Vivo C., Metelli C.: On direct decompositions of Butler $B(2)$-groups. Contributions to Module Theory, W. de Gruyter, 2007, pp. 1--18. Zbl 1191.20059
[DVM 14] De Vivo C., Metelli C.: The typeset of a $B(2)$-group. to appear.
Partner of
EuDML logo