Article
Keywords:
$C_0$-semigroups; universal elements
Summary:
Let $T:[0, \infty) \to L(E)$ be a $C_0$-semigroup with unbounded generator $A:D(A)\to E$. We prove that $(T(t)x-x)/t$ has generically a very irregular behaviour for $x\notin D(A)$ as $t \to 0+$.
References:
[1] Goldberg S.:
Unbounded Linear Operators: Theory and Applications. McGraw-Hill Book Co., New York-Toronto-London, 1966.
MR 0200692 |
Zbl 1152.47001
[3] Herzog G., Lemmert R.:
On Hölder continuous universal primitives. Bull. Korean Math. Soc, to appear.
MR 2502799 |
Zbl 1163.26304
[4] Marcinkiewicz J.:
Sur les nombres dérivés. Fund. Math. 24 (1935), 305--308.
Zbl 0011.10705
[5] Pazy A.:
Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44, Springer, New York, 1983.
MR 0710486 |
Zbl 0516.47023
[6] Taylor A.E., Lay D.C.:
Introduction to Functional Analysis. second edition, John Wiley & Sons, New York-Chichester-Brisbane, 1980.
MR 0564653 |
Zbl 0654.46002
[7] Wilansky A.:
Modern Methods in Topological Vector Spaces. McGraw-Hill International Book Co., New York, 1978.
MR 0518316 |
Zbl 0395.46001