Previous |  Up |  Next

Article

Keywords:
regular linear regression model; nuisance parameters; BLUE; constraints
Summary:
The linear regression model in which the vector of the first order parameter is divided into two parts: to the vector of the useful parameters and to the vector of the nuisance parameters is considered. The type I constraints are given on the useful parameters. We examine eliminating transformations which eliminate the nuisance parameters without loss of information on the useful parameters.
References:
[1] Anderson T. W.: Introduction to Multivariate Statistical Analysis. : J. Wiley, New York. 1958. MR 0091588
[2] Kubáček L., Kubáčková L., Volaufová J.: Statistical Models with Linear Structures. : Veda (Publishing House of Slovak Academy of Sciences), Bratislava. 1995.
[3] Lešanská E.: Optimization of the size of nonsensitiveness regions. Appl. Math. 47 (2002), 9–23. MR 1876489
[4] Rao C. R.: Linear Statistical Inference, Its Applications. : J. Wiley, New York. 1973 (second edition). MR 0346957
[5] Rao C. R., Mitra S. K.: Genaralized Inverse of Matrices, its Applications. : John Wiley & Sons, New York– London–Sydney–Toronto. 1971. MR 0338013
[6] Rao C. R., Kleffe J.: Estimation of Variance Components, Applications. : North–Holland, Amsterdam–New York–Oxford–Tokyo. 1988. MR 0933559
Partner of
EuDML logo