[2] F. Bombal: Medidas vectoriales y espacios de funciones continuas. Publicaciones del Departamento de Análisis Matemático, Sección 1, No. 3, Fac. de Matemáticas, Universidad Complutense de Madrid, 1984.
[3] F. Bombal and P. Cembranos:
Characterization of some classes of operators on spaces of vector valued continuous functions. Math. Proc. Cambridge Phil. Soc. 97 (1985), 137–146.
DOI 10.1017/S0305004100062678 |
MR 0764502
[5] F. Bombal and I. Villanueva:
Multilinear operators in spaces of continuous functions. Funct. Approx. Comment. Math. XXVI (1998), 117–126.
MR 1666611
[8] F. Cabello, R. García and I. Villanueva: Regularity and extension of multilinear forms on Banach spaces. Extracta Mathematicae (2000).
[9] P. Cembranos and J. Mendoza:
Banach Spaces of Vector-valued Functions. Lecture Notes in Math. Vol. 1676. Springer, Berlin, 1997.
DOI 10.1007/BFb0096765 |
MR 1489231
[10] J. Diestel:
Sequences and Series in Banach Spaces. Graduate Texts in Math. Vol. 92, Springer, Berlin, 1984.
MR 0737004
[11] J. Diestel, H. Jarchow and A. Tonge:
Absolutely Summing Operators. Cambridge Stud. Adv. Math. Vol. 43. Cambridge Univ. Press, Cambridge, 1995.
MR 1342297
[13] N. Dinculeanu and M. Muthiah:
Bimeasures in Banach spaces. Preprint.
MR 1849394
[14] I. Dobrakov:
On representation of linear operators on $ C_0 (T , X )$. Czechoslovak Math. J. 21(96) (1971), 13–30.
MR 0276804
[15] I. Dobrakov:
On integration in Banach spaces. VIII (polymeasures). Czechoslovak Math. J. 37(112) (1987), 487–506.
MR 0904773 |
Zbl 0688.28002
[16] I. Dobrakov:
Representation of multilinear operators on $\times C_0 (T_i , X_i )$, I. Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991), 131–138.
MR 1111763
[17] M. Fernández Unzueta:
Unconditionally convergent polynomials in Banach spaces and related properties. Extracta Math. 12 (1997), 305–307.
MR 1627517
[18] M. González and J. Gutiérrez:
Orlicz-Pettis polynomials on Banach spaces. Monats. Math. 129 (2000), 341–350.
DOI 10.1007/s006050050080
[19] J. Gutiérrez and I. Villanueva: Aron-Berner extensions and Banach space properties. Preprint.
[24] I. Villanueva: Representación de operadores multilineales en espacios de funciones continuas. PhD. Thesis, Universidad Complutense de Madrid, 1999.