Previous |  Up |  Next

Article

References:
[1] AÏT-DJAFER H.: Linear arboricity for graphs with maximum degree six or seven and edge multiplicity two. Ars Combin. A 22 (1985), 5-16. MR 0831441 | Zbl 0595.05021
[2] AÏT-DJAFER H.: Linear arboricity for graphs with multiple edges. J. Graph Theоry 11 (1987), 135-140. MR 0889345 | Zbl 0673.05049
[3] AKIYAMA J., EXOO G., HARRARY F.: Covering and packing in graphs III. Cyclic and acyclic invariants. Math. Slоvaca 30 (1980), 405-417. MR 0595302
[4] AKIYAMA J., EXOO G., HARRARY F.: Covering and packing in graphs IV. Linear arboricity. Networks 11 (1981), 69-72. MR 0608921
[5] ALON N.: The linear arboiгcity of graphs. Israel J. Math. 62 (1988). 311-325. MR 0955135
[6] ENOMOTO H., PEROCHE B.: The linear arboricity of some regular graphs. J. Graph Theогy 8 (1984), 309-324. MR 0742883 | Zbl 0581.05017
[7] GULDAN F.: The linear arboricity of 10-regular graphs. Math. Slоvaca 36 (1986). 225-228. MR 0866621
[8] HORÁK P., NIEPEL Ľ.: A short proof of a linear arboricity theorem for cubic graphs. Acta Math. Univ. Cоmenian. XL-XLI (1982), 275-277. MR 0686983 | Zbl 0548.05057
[9] NASH-WILLIAMS C. ST. J. A.: Edge-disjoint spanning trees of finite graphs. J. Lоndоn Math. Soc. 36 (1961), 445-450. MR 0133253 | Zbl 0102.38805
[10] NASH-WILLIAMS C. ST. J. A.: Decompositions of finite graphs into forests. J. Lоndоn Math. Sоc. 39 (1964), 12. MR 0161333
[11] TOMASTA P.: Note on linear arboricity. Math. Slоvaca 32 (1982), 239-242. MR 0669999 | Zbl 0494.05047
[12] TUTTE W. T.: On the problem of decomposing a graph into n connected factors. J. Lоndоn Math. Sоc. 36 (1961), 221-230. MR 0140438 | Zbl 0096.38001
Partner of
EuDML logo