[1] AÏT-DJAFER H.:
Linear arboricity for graphs with maximum degree six or seven and edge multiplicity two. Ars Combin. A 22 (1985), 5-16.
MR 0831441 |
Zbl 0595.05021
[2] AÏT-DJAFER H.:
Linear arboricity for graphs with multiple edges. J. Graph Theоry 11 (1987), 135-140.
MR 0889345 |
Zbl 0673.05049
[3] AKIYAMA J., EXOO G., HARRARY F.:
Covering and packing in graphs III. Cyclic and acyclic invariants. Math. Slоvaca 30 (1980), 405-417.
MR 0595302
[4] AKIYAMA J., EXOO G., HARRARY F.:
Covering and packing in graphs IV. Linear arboricity. Networks 11 (1981), 69-72.
MR 0608921
[5] ALON N.:
The linear arboiгcity of graphs. Israel J. Math. 62 (1988). 311-325.
MR 0955135
[6] ENOMOTO H., PEROCHE B.:
The linear arboricity of some regular graphs. J. Graph Theогy 8 (1984), 309-324.
MR 0742883 |
Zbl 0581.05017
[7] GULDAN F.:
The linear arboricity of 10-regular graphs. Math. Slоvaca 36 (1986). 225-228.
MR 0866621
[8] HORÁK P., NIEPEL Ľ.:
A short proof of a linear arboricity theorem for cubic graphs. Acta Math. Univ. Cоmenian. XL-XLI (1982), 275-277.
MR 0686983 |
Zbl 0548.05057
[9] NASH-WILLIAMS C. ST. J. A.:
Edge-disjoint spanning trees of finite graphs. J. Lоndоn Math. Soc. 36 (1961), 445-450.
MR 0133253 |
Zbl 0102.38805
[10] NASH-WILLIAMS C. ST. J. A.:
Decompositions of finite graphs into forests. J. Lоndоn Math. Sоc. 39 (1964), 12.
MR 0161333
[12] TUTTE W. T.:
On the problem of decomposing a graph into n connected factors. J. Lоndоn Math. Sоc. 36 (1961), 221-230.
MR 0140438 |
Zbl 0096.38001