Title:
|
Finite-valued dually residuated lattice-ordered monoids (English) |
Author:
|
Kühr, Jan |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
56 |
Issue:
|
4 |
Year:
|
2006 |
Pages:
|
397-408 |
. |
Category:
|
math |
. |
MSC:
|
03G25 |
MSC:
|
06D35 |
MSC:
|
06F05 |
idZBL:
|
Zbl 1141.06014 |
idMR:
|
MR2267761 |
. |
Date available:
|
2009-09-25T14:33:29Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133267 |
. |
Reference:
|
[1] BALBES R.-DWINGER P.: Distributive Lattices.University of Missouri Press, Columbia, 1974. Zbl 0321.06012, MR 0373985 |
Reference:
|
[2] CIGNOLI R. L. O.-D'OTTAWIANO I. M. L.- MUNDICI D.: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. MR 1786097 |
Reference:
|
[3] CONRAD, P: The lattice of all convex t-subgroups of a lattice-ordered group.Czechoslovak Math. J. 15 (1965), 101-123. MR 0173716 |
Reference:
|
[4] DI NOLA A.-GEORGESCU G.-IORGULESCU A.: Pseudo BL-algebras: Part I.Mult.-Valued Log. 8 (2002), 673-714. MR 1948853 |
Reference:
|
[5] DI NOLA A.-GEORGESCU C.-IORGULESCU A.: Pseudo BL-algebras: Part II.Mult.-Valued Log. 8 (2002), 717-750. MR 1948854 |
Reference:
|
[6] FILIPOIU A.-GEORGESCU C.: On values in relatively normal lattices.Discrete Math. 161 (1996), 87-100. Zbl 0872.06008, MR 1420523 |
Reference:
|
[7] GEORGESCU C.-IORGULESCU A.: Pseudo MV-algebras.Mult.-Valued Log. 6 (2001), 95-135. Zbl 1014.06008, MR 1817439 |
Reference:
|
[8] GLASS A. M. W.: Partially Ordered Groups.World Scientific, Singapore-New Jersey-London-Hong Kong, 1999. Zbl 0933.06010, MR 1791008 |
Reference:
|
[9] HÁJEK P.: Basic fuzzy logic and BL-algebras.Soft Comput. 2 (1998), 124-128. |
Reference:
|
[10] KOVÁŘ T.: A General Theory of Dually Residuated Lattice Ordered Monoids.Ph.D. Thesis, Palacky University, Olomouc, 1996. |
Reference:
|
[11] KÜHR J.: Ideals of noncommutative DRt-monoids.Czechoslovak Math. J. 55 (2005), 97-111. MR 2121658 |
Reference:
|
[12] KÜHR J.: Prime ideals and polars in $DR\ell$-monoids and pseudo $BL$-algebras.Math. Slovaca 53 (2003), 233-246. MR 2025020 |
Reference:
|
[13] RACHŮNEK J.: $MV$ -algebras are categorically equivalent to a class of $DR\ell_{1(i)}$ -semi-groups.Math. Bohem. 123 (1998), 437-441. MR 1667115 |
Reference:
|
[14] RACHŮNEK J.: A duality between algebras of basic logic and bounded representable $DR\ell$-monoids.Math. Bohem. 126 (2001), 561-569. MR 1970259 |
Reference:
|
[15] RACHŮNEK J.: A non-commutative generalization of MV-algebras.Czechoslovak Math. J. 52 (2002), 255-273. Zbl 1012.06012, MR 1905434 |
Reference:
|
[16] RACHŮNEK J.: Radicals in non-commutative generalizations of MV -algebras.Math. Slovaca 52 (2002), 135-144. Zbl 1008.06011, MR 1935113 |
Reference:
|
[17] SNODGRASS J. T.-TSINAKIS C.: Finite-valued algebraic lattices.Algebra Universalis 30 (1993), 311-318. Zbl 0806.06011, MR 1225870 |
Reference:
|
[18] SNODGRASS J. T.-TSINAKIS C.: The finite basis theorem for relatively normal lattices.Algebra Universalis 33 (1995), 40-67. Zbl 0819.06009, MR 1303631 |
Reference:
|
[19] SWAMY K. L. N.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105-114. Zbl 0138.02104, MR 0183797 |
. |