Previous |  Up |  Next

Article

Title: Finite-valued dually residuated lattice-ordered monoids (English)
Author: Kühr, Jan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 56
Issue: 4
Year: 2006
Pages: 397-408
.
Category: math
.
MSC: 03G25
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1141.06014
idMR: MR2267761
.
Date available: 2009-09-25T14:33:29Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/133267
.
Reference: [1] BALBES R.-DWINGER P.: Distributive Lattices.University of Missouri Press, Columbia, 1974. Zbl 0321.06012, MR 0373985
Reference: [2] CIGNOLI R. L. O.-D'OTTAWIANO I. M. L.- MUNDICI D.: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. MR 1786097
Reference: [3] CONRAD, P: The lattice of all convex t-subgroups of a lattice-ordered group.Czechoslovak Math. J. 15 (1965), 101-123. MR 0173716
Reference: [4] DI NOLA A.-GEORGESCU G.-IORGULESCU A.: Pseudo BL-algebras: Part I.Mult.-Valued Log. 8 (2002), 673-714. MR 1948853
Reference: [5] DI NOLA A.-GEORGESCU C.-IORGULESCU A.: Pseudo BL-algebras: Part II.Mult.-Valued Log. 8 (2002), 717-750. MR 1948854
Reference: [6] FILIPOIU A.-GEORGESCU C.: On values in relatively normal lattices.Discrete Math. 161 (1996), 87-100. Zbl 0872.06008, MR 1420523
Reference: [7] GEORGESCU C.-IORGULESCU A.: Pseudo MV-algebras.Mult.-Valued Log. 6 (2001), 95-135. Zbl 1014.06008, MR 1817439
Reference: [8] GLASS A. M. W.: Partially Ordered Groups.World Scientific, Singapore-New Jersey-London-Hong Kong, 1999. Zbl 0933.06010, MR 1791008
Reference: [9] HÁJEK P.: Basic fuzzy logic and BL-algebras.Soft Comput. 2 (1998), 124-128.
Reference: [10] KOVÁŘ T.: A General Theory of Dually Residuated Lattice Ordered Monoids.Ph.D. Thesis, Palacky University, Olomouc, 1996.
Reference: [11] KÜHR J.: Ideals of noncommutative DRt-monoids.Czechoslovak Math. J. 55 (2005), 97-111. MR 2121658
Reference: [12] KÜHR J.: Prime ideals and polars in $DR\ell$-monoids and pseudo $BL$-algebras.Math. Slovaca 53 (2003), 233-246. MR 2025020
Reference: [13] RACHŮNEK J.: $MV$ -algebras are categorically equivalent to a class of $DR\ell_{1(i)}$ -semi-groups.Math. Bohem. 123 (1998), 437-441. MR 1667115
Reference: [14] RACHŮNEK J.: A duality between algebras of basic logic and bounded representable $DR\ell$-monoids.Math. Bohem. 126 (2001), 561-569. MR 1970259
Reference: [15] RACHŮNEK J.: A non-commutative generalization of MV-algebras.Czechoslovak Math. J. 52 (2002), 255-273. Zbl 1012.06012, MR 1905434
Reference: [16] RACHŮNEK J.: Radicals in non-commutative generalizations of MV -algebras.Math. Slovaca 52 (2002), 135-144. Zbl 1008.06011, MR 1935113
Reference: [17] SNODGRASS J. T.-TSINAKIS C.: Finite-valued algebraic lattices.Algebra Universalis 30 (1993), 311-318. Zbl 0806.06011, MR 1225870
Reference: [18] SNODGRASS J. T.-TSINAKIS C.: The finite basis theorem for relatively normal lattices.Algebra Universalis 33 (1995), 40-67. Zbl 0819.06009, MR 1303631
Reference: [19] SWAMY K. L. N.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105-114. Zbl 0138.02104, MR 0183797
.

Files

Files Size Format View
MathSlov_56-2006-4_4.pdf 670.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo