[1] AGLIANO P.-MONTAGNA F.:
Varieties of BL-algebras I: General properties. J. Pure Appl. Algebra 181 (2003), 105-129.
MR 1975295 |
Zbl 1034.06009
[2] BAHLS P.-COLE J.-GALATOS N.-JIPSEN P.-TSINAKIS C.:
Cancellative residuated lattices. Algebra Universalis 50 (2003), 83-106.
MR 2026830 |
Zbl 1092.06012
[4] CHAJDA I.-KÜHR J.:
GMV-algebras and meet-semilattices with sectionally antitone permutations. Math. Slovaca (To appear).
MR 2250079 |
Zbl 1141.06002
[5] CIGNOLI R.-ESTEVA F.-GODO L.-TORRENS A.: Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Comput. 4 (2000), 106-112.
[7] DI NOLA A.-GEORGESCU G.-IORGULESCU A.:
Pseudo BL-algebras: Part I. Mult.-Valued Log. 8 (2002), 673-714.
MR 1948853
[8] DI NOLA A.-GEORGESCU G.-IORGULESCU A.:
Pseudo BL-algebras: Part II. Mult.-Valued Log. 8 (2002), 717-750.
MR 1948854
[9] DVUREČENSKIJ A.:
Pseudo MV-algebras are intervals in t-groups. J. Aust. Math. Soc. 70 (2002), 427-445.
MR 1902211
[10] DVUREČENSKIJ A.-RACHŮNEK J.: Bounded commutative residuated t-monoids with general comparability and states. Soft Comput. 10 (2006), 212-218.
[11] DVUREČENSKIJ A.-RACHŮNEK J.:
Probabilistic averaging in bounded commutative residuated t-monoids. Discrete Math. (2006) (To appear).
MR 2237716
[12] DVUREČENSKIJ A.-RACHŮNEK J.:
Probabilistic averaging in bounded Rt-monoids. Semigroup Forum 72 (2006), 190-206.
MR 2216089
[14] HÁJEK P.: Basic fuzzy logic and BL-algebras. Soft Comput. 2 (1998), 124-128.
[15] JAKUBÍK J.:
On interval subalgebras of generalized MV-algebras. Math. Slovaca 56 (2006) (To appear).
MR 2267760 |
Zbl 1141.06006
[16] RACHŮNEK J.:
A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255-273.
MR 1905434 |
Zbl 1012.06012