Previous |  Up |  Next

Article

References:
[1] BETTEN A.-BRINKMANN G.-PISANSKI T.: Counting symmetric v3 configurations. (Submitted).
[2] BIGGS N.: Algebraic Graph Theory. (2nd ed.), Cambridge Univ. Press, Cambridge, 1993. MR 1271140
[3] The Foster Census. (I. Z. Bouwer et al, eds.), The Charles Babbage Research Centre, Winnipeg, 1988. MR 0935537 | Zbl 0639.05043
[4] COXETER H. S. M.-MOSER W. O. J.: Generators and Relators for Discrete Groups. (4th ed.). Ergeb. Math. Grenzgeb. (3), Bd. 14, Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR 0562913
[5] DU S. F.-MARUŠIČ D.-WALLER A. O.: On 2-arc-transitive covers of complete graphs. J. Combin. Theory Ser. B 74 (1998), 276-290. MR 1654121 | Zbl 1026.05057
[6] FRUCHT R.-GRAVER J. E.-WATKINS M. E.: The groups of the generalized Petersen graphs. Proc. Cambridge Pnilos. Soc. 70 (1971), 211-218. MR 0289365 | Zbl 0221.05069
[7] HLADNIK M.-MARUŠIČ D.-PISANSKI T.: Cyclic Haar graphs. (Submitted). Zbl 0993.05084
[8] GROPP H.: Configurations. In: The CRC Handbook of Combinatorial Designs (C J. Colburn, J. H. Dinitz, eds.), CRC Press Ser. on Discr. Math, and its Appl., CRC Press, Boca Raton, CA, 1996, pp. 253-255. MR 1392993 | Zbl 0864.05024
[9] LOVREČIČ-SARAŽIN M.: A note on the generalized Petersen graphs that are also Cayley graphs. J. Combin. Theory Ser. B 69 (1997), 226-229. MR 1438623 | Zbl 0867.05027
[10] NEDELA R.-ŠKOVIERA M.: Which generalized Petersen graphs are Cayley graphs. J. Graph Theory 19 (1995), 1-11. MR 1315420 | Zbl 0812.05026
[11] PISANSKI T.-RANDIČ M.: Bridges between Geometry and Graph Theory. (To appear). MR 1782654
[12] ŠKOVIERA M.-ŠIRÁŇ J.: Regular maps from Cayley graphs, Part 1: Balanced Cayley maps. Discrete Math. 109 (1992), 265-276. MR 1192388
[13] SUROWSKI D.: The Möbius-Kantor regular map of genus two and regular Ramified coverings. Presented at SIGMAC 98, Flagstaff, AZ, July 20-24, 1998, http://odin.math.nau.edu:80/~sew/sigmac.html
[14] TUCKER T. W.: There is only one group of genus two. J. Combin. Theory Ser. B 36 (1984), 269-275. MR 0753604
Partner of
EuDML logo