[1] CHANG C. C.:
Algebraic analysis of many valued logic. Trans. Amer. Math. Soc. 88 (1958), 467-490.
MR 0094302
[2] CIGNOLI R. L. O.-D'OTTAVIANO I. M. L.-MUNDICI D.:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
MR 1786097 |
Zbl 0937.06009
[3] CIGNOLI R.-TORRENS A.:
Hájek basic fuzzy logic and Lukasiewicz infinite valued logic. Arch. Math. Logic 42 (2003), 361-370.
MR 2018087 |
Zbl 1025.03018
[4] DI NOLA A.-GEORGESCU G.-IORGULESCU A.:
Pseudo BL-algebras I. Mult.-Valued Log. 8 (2002), 673-714.
MR 1948853 |
Zbl 1028.06007
[5] DI NOLA A.-GEORGESCU G.-IORGULESCU A.:
Pseudo BL-algebras II. Mult.-Valued Log. 8 (2002), 715-750.
MR 1948854 |
Zbl 1028.06008
[6] DVUREČENSKIJ A.-PULMANNOVÁ S.:
New Trends in Quantum Structures. Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 2000.
MR 1861369 |
Zbl 0987.81005
[7] GEORGESCU G.:
Bosbach states on fuzzy structures. Soft Comput. 8 (2004), 217-230.
Zbl 1081.06012
[10] HÁJEK P.:
Fuzzy logics with non-commutative conjunction. J. Logic Comput. 13 (2003), 469 479.
MR 1999959
[11] KOVÁŘ T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis, Palacky Univ., Olomouc, 1996.
[12] KÜHR J.:
Pseudo BL-algebras and DRI-monoids. Math. Bohem. 128 (2003), 199-208.
MR 1995573
[13] KÜHR J.:
Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis, Palacky Univ., Olomouc, 2003.
Zbl 1141.06014
[14] LAMBEK J.:
Some lattice models of bilinear logic. Algebra Universalis 34 (1995), 541-550.
MR 1357483 |
Zbl 0840.03044
[15] RACHŮNEK J.:
A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255-273.
MR 1905434 |
Zbl 1012.06012
[16] RACHŮNEK J.:
Prime spectra of non-commutative generalizations of MV-algebras. Algebra Universalis 48 (2002), 151-169.
MR 1929902 |
Zbl 1058.06015
[17] RACHŮNEK J.-SLEZÁK V.:
Negation in bounded commutative DRI-monoids. Czechoslovak Math. J. (To appear).
MR 2291772
[18] SWAMY K. L. N.:
Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105-114.
MR 0183797 |
Zbl 0138.02104