Previous |  Up |  Next

Article

Keywords:
BCK-algebras; deductive system; irreducible deductive system; Heyting algebras; annihilators
Summary:
In this paper we shall give some results on irreducible deductive systems in BCK-algebras and we shall prove that the set of all deductive systems of a BCK-algebra is a Heyting algebra. As a consequence of this result we shall show that the annihilator $F^{\ast }$ of a deductive system $F$ is the the pseudocomplement of $F$. These results are more general than that the similar results given by M. Kondo in [7].
References:
[1] Celani S.: A note on Homomorphisms of Hilbert Algebras. International Journal of Mathematics and Mathematical Science 29, 1 (2002), 55–61. MR 1892332 | Zbl 0993.03089
[2] Chajda I., Halaš R., Zedník J.: Filters and Annihilators in Implication Algebras. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 37 (1998), 41–45. MR 1690472 | Zbl 0967.03059
[3] Chajda I., Halaš R., Jun J. B. : Annihilators and deductive systems in commutative Hilbert algebras. Comment. Math. Univ. Carolinae 43, 3 (2002) 407–417. MR 1920517 | Zbl 1070.03043
[4] Jun Y. B., Roh E. H., Meng J.: Annihilators in BCI-algebras. Math. Japonica 43, 3 (1996), 559–562. MR 1391864 | Zbl 0854.06028
[5] Halaš R.: Annihilators of BCK-algebras. Czech. Math. Journal 53, 128 (2003), 1001–1007. MR 2018845
[6] Halaš R.: Remarks on commutative Hilbert algebras. Math. Bohemica 127, 4 (2002), 525–529. MR 1942638 | Zbl 1008.03039
[7] Kondo M.: Annihilators in BCK-algebras. Math. Japonica 49, 3 (1999), 407–410. MR 1697812 | Zbl 0932.06014
[8] Pałasiński M.: Ideals in BCK-algebras which are lower semilattices. Math. Japonica 26, 2 (1981), 245–250. MR 0620466 | Zbl 0464.03056
[9] Pałasiński M.: On ideal and congruence lattices of BCK-algebras. Math. Japonica 26, 5 (1981), 543–544. MR 0636589 | Zbl 0476.03064
[10] Wei S. M., Jun Y. B.: Ideal lattices of BCI-algebras. Math. Japonica 44, 2 (1996), 303–305. MR 1416268 | Zbl 0878.06011
Partner of
EuDML logo