Previous |  Up |  Next

Article

Keywords:
ultimate boundedness; complete Lyapunov functions; nonlinear third order system
Summary:
In this paper, we shall give sufficient conditions for the ultimate boundedness of solutions for some system of third order non-linear ordinary differential equations of the form $${\ensuremath{\mathop{\smash{X}\vrule width0ptheight5.46pt}\limits^{\hbox to 8pt{\hss \footnotesize \kern1pt.\kern-0.065em.\kern-0.065em.\hss}}}}+F(\ddot{X})+G(\dot{X})+H(X)= P(t,X,\dot{X},\ddot{X})$$ where $X,F(\ddot{X})$, $G(\dot{X})$, $H(X)$, $P(t,X,\dot{X},\ddot{X})$ are real $n$-vectors with $F,G$, $H:\mathbb{R}^n\rightarrow\mathbb{R}^n$ and $P:\mathbb{R}\times \mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}^n$ continuous in their respective arguments. We do not necessarily require that $F(\ddot{X}),G(\dot{X})$ and $H(X)$ are differentiable. Using the basic tools of a complete Lyapunov Function, earlier results are generalized.
References:
[1] Afuwape A. U.: Ultimate boundedness results for a certain system of third-order non-linear differential equation. J. Math. Anal. Appl. 97 (1983), 140–150. MR 0721235
[2] Afuwape A. U.: Uniform dissipative solutions for a third-order non-linear differential equation. In: Differential equations (J. W. Knowles and R. T. Lewis, eds.), Elsevier, North Holland, 1984, 1–6. MR 0799326 | Zbl 0552.34060
[3] Afuwape A. U.: Further ultimate boundedness results for a third order non-linear system of differential equations. Analisi Funzionale e Appl. 6, 99–100, N. I. (1985), 348–360. MR 0805225 | Zbl 0592.34024
[4] Afuwape A. U., Ukpera A. S.: Existence of solutions of periodic boundary value problems for some vector third order differential equations. J. of Nig. Math. Soc. 20 (2001), 1–17. MR 2055195
[5] Ezeilo J. O. C.: $n$-dimensioinal extensions of boundedness and stability theorems for some third order differential equations. J. Math. Anal. Appl. 18 (1967), 395–416. MR 0212298
[6] Ezeilo J. O. C.: Stability Results for the Solutions of some third and fourth order differential equations. Ann. Mat. Pura. Appl. 66, 4 (1964), 233–250. MR 0173831 | Zbl 0126.30403
[7] Ezeilo J. O. C.: New properties of the equation $x^{\prime \prime \prime }+ax^{\prime \prime }+bx^{\prime }+h(x)=p(t,x,\dot{x},x^{\prime \prime })$ for certain special values of the incrementary ratio $y^{-1}\lbrace h(x+y)-h(x)\rbrace $. In: Equations Differentielles et Functionelles Non-lineares (P. Janssens, J. Mawhin and N. Rouche, eds.), Hermann, Paris, 1973, 447–462. MR 0430413
[8] Ezeilo J. O. C., Tejumola H. O.: Boundedness and periodicity of solutions of a certain system of third-order non-linear differential equations. Ann. Math. Pura e Appl. 74 (1966), 283–316. MR 0204787 | Zbl 0148.06701
[9] Ezeilo J. O. C., Tejumola H. O.: Further results for a system of third order ordinary differential equations. Atti. Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 143–151. MR 0425261
[10] Meng F. W.: Ultimate boundedness results for a certain system of third order nonlinear differential equations. J. Math. Anal. Appl. 177 (1993), 496–509. MR 1231497
[11] Reissig R., Sansone G., Conti R.: Non-Linear Differential Equations of Higher Order. : Noordhoff, Groningen. 1974. MR 0344556
[12] Tiryaki A.: Boundedness and periodicity results for a certain system of third order non-linear differential equations. Indian J. Pure Appl. Math. 30, 4 (1999). 361–372. MR 1695688
Partner of
EuDML logo