Previous |  Up |  Next

Article

References:
[1] ALDRED R. E. L., HOLTON D. A., JACKSON B.: Uniform cyclic edge connectivity in cubic graphs. Combinatorica 11 (1991), 81-96. MR 1136159 | Zbl 0759.05057
[2] ANDERSEN L. D., FLEISCHNER H., JACKSON B.: Removable edges in cyclically 4-edge-connected cubic graphs. Graphs Combin. 4 (1988), 1-21. MR 0922156 | Zbl 0643.05046
[3] FOUQUET J.-L., THUILLIER H.: Non-removable edges in 3-connected cubic graphs. Graphs Combin. 7 (1991), 119-141. MR 1115132 | Zbl 0758.05064
[4] LOVÁSZ L.: On graphs containing no independent cycles. (Hungarian), Mat. Lapok 16 (1965), 289-299. MR 0211902
[5] LOVÁSZ L.: Combinatorial Problems and Exercises. Akademiai Kiadó, Budapest, 1979. MR 0537284 | Zbl 0439.05001
[6] MADER W.: Minimale n-fach kantenzusammenhängende Graphen. Math. Ann. 21 (1971), 21-28. MR 0291004 | Zbl 0198.29202
[7] McCUAIG W. D.: Edge reductions in cyclically k-connected cubic graphs. J. Combin. Theory Ser. B 56 (1992), 16-44. MR 1182455 | Zbl 0711.05030
[8] MOSHI A. M.: Matching cutsets in graphs. J. Graph Theory 13 (1989), 527-536. MR 1016273 | Zbl 0725.05055
[9] NEDELA R., ŠKOVIERA, M: On cyclic connectivity of cubic graphs. Manuscript.
[10] NEDELA R., ŠKOVIERA M.: Atoms of cyclic connectivity in transitive cubic graphs. In: Contemporary Methods in Graph Theory (R. Bodendiek, ed.),BI-Wissenschaftsverlag, Mannheim, 1990, pp. 479-488. MR 1126248 | Zbl 0717.05049
[11] TUTTE W. T.: A non-Hamiltonian planar graph. Acta Math. Acad. Scient. Hung. 11 (1960), 371-375. MR 0141104 | Zbl 0103.16202
[12] TUTTE W. T.: Graph Theory. Encyclopedia Math. Appl. 21, Addison-Wesley, Reading, 1984. MR 0746795 | Zbl 0554.05001
[13] WATKINS M. E.: Connectivity of transitive graphs. J. Combin. Theory 8 (1970), 23-29. MR 0266804 | Zbl 0185.51702
Partner of
EuDML logo