[1] ALFSEN E. M.:
Compact Convex Sets and Boundary Integrals. Springer-Verlag, New York, 1971.
MR 0445271 |
Zbl 0209.42601
[2] BELTRAMETTI E. G.-BUGAJSKI S.:
Effect algebras and statistical physical theories. J. Math. Phys. 38 (1997), 3020-3030.
MR 1449546 |
Zbl 0874.06009
[3] BENNETT M. K.-FOULIS D. J.:
Interval and scale effect algebras. Adv. Appl. Math. 19 (1997), 200-215.
MR 1459498 |
Zbl 0883.03048
[4] BUSCH P.-LAHTI P. J.-MITTELSTAEDT P.:
The Quantum Theory of Measurement. Lecture Notes in Phys. New Ser. m Monogr. 2, Springer-Verlag, Berlin-Heidelberg-New York, 1991.
MR 1176754
[6] FOULIS D. J.:
Representation of a unital group having a finite unit interval. Demonstratio Math. 36 (To appear).
MR 2018699 |
Zbl 1074.06007
[7] FOULIS D. J.:
Archimedean unital groups with finite unit intervals. Internat. J. Math. Math. Sci. 2003 no. 44 (2003), 2787-2801.
MR 2003789 |
Zbl 1033.06008
[8] FOULIS D. J.-BENNETT M. K.:
Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331-1352.
MR 1304942 |
Zbl 1213.06004
[9] FOULIS D. J.-GREECHIE R. J.-BENNETT M. K.:
The transition to unigroups. Internat. J. Theoret. Phys. 37 (1998), 45-64.
MR 1637148 |
Zbl 0904.06013
[10] GOODEARL K.:
Partially Ordered Abelian Groups With Interpolation. Math. Surveys Monographs 20, Amer. Math. Soc, Providence, RI, 1986.
MR 0845783 |
Zbl 0589.06008
[11] GUDDER S. P.:
Examples, problems, and results in effect algebras. Internat. J. Theoret. Phys. 35 (1996), 2365-2376.
MR 1423412 |
Zbl 0868.03028
[13] GUDDER S. P.-PULMANNOVÁ S.-BUGAJSKI S.-BELTRAMETTI E. G.:
Convex and linear effect algebras. Rep. Math. Phys. 44 (1999), 359-379.
MR 1737384 |
Zbl 0956.46002
[14] LAHTI P.-PULMANNOVÁ S.-YLINEN K.:
Coexistent observables and effects in a convexity approach. J. Math. Phys. 39 (1998), 6364-6371.
MR 1656976 |
Zbl 0935.81010
[15] LUDWIG G.:
Foundations of Quantum Mechanics I,II. Springer, New Yоrk, 1983/85.
MR 0690770